File size: 15,373 Bytes
e7d5fd1
 
 
 
 
 
 
 
 
 
 
 
721acb9
e7d5fd1
 
 
721acb9
 
356ecc7
e7d5fd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
721acb9
 
 
 
 
 
 
 
 
 
 
 
 
 
e7d5fd1
 
 
 
 
 
721acb9
 
 
356ecc7
 
 
 
 
 
 
 
721acb9
 
 
 
 
356ecc7
 
 
 
 
721acb9
 
 
 
 
 
 
356ecc7
 
6dd6be7
721acb9
 
4143fee
e7d5fd1
 
 
 
 
 
 
721acb9
 
 
356ecc7
 
 
 
 
 
 
 
 
 
721acb9
 
 
 
 
356ecc7
 
 
 
 
 
721acb9
356ecc7
 
 
 
 
 
 
 
721acb9
356ecc7
 
 
721acb9
 
 
 
 
 
 
356ecc7
 
 
721acb9
356ecc7
 
721acb9
 
4143fee
e7d5fd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a4f9cb
e7d5fd1
 
 
 
 
 
 
 
 
 
 
 
2a4f9cb
e7d5fd1
 
 
 
 
2a4f9cb
 
e7d5fd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a4f9cb
e7d5fd1
 
 
 
 
 
 
 
 
 
 
 
2a4f9cb
e7d5fd1
 
 
 
 
2a4f9cb
 
e7d5fd1
 
 
 
 
 
 
af7e837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6618e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7d5fd1
 
 
 
 
 
 
af7e837
c6618e6
e7d5fd1
 
721acb9
e7d5fd1
 
 
 
af7e837
 
c6618e6
 
e7d5fd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
# -*- coding: utf-8 -*-
"""
模型接口模块
用于与两个大模型API进行交互的封装
"""

import os
import sys
import requests
import json
import time
import logging
import random
from typing import Dict, Any, Optional, Callable
from urllib3.exceptions import InsecureRequestWarning

# 在代码开头强制设置终端编码为UTF-8(仅在Windows执行)
if os.name == 'nt':
    os.system('chcp 65001 > nul')

# 获取当前脚本文件所在目录的绝对路径
current_script_dir = os.path.dirname(os.path.abspath(__file__))

# 项目根目录 (即 '20250907_大模型辩论' 目录, 是 'src' 的上一级)
project_root = os.path.dirname(current_script_dir)

# 定义数据输入、输出和日志目录
DATA_DIR = os.path.join(project_root, 'data')
OUTPUT_DIR = os.path.join(project_root, 'output')
LOGS_DIR = os.path.join(project_root, 'logs')

# 确保目录存在
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(LOGS_DIR, exist_ok=True)

# 配置日志
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler(os.path.join(LOGS_DIR, '模型接口日志.log'), encoding='utf-8'),
        logging.StreamHandler(sys.stdout)
    ]
)
logger = logging.getLogger(__name__)

# 捕获警告并记录到日志
logging.captureWarnings(True)

class ModelInterface:
    """模型接口基类"""
    
    def __init__(self, api_key: str, base_url: str):
        self.api_key = api_key
        self.base_url = base_url
        self.headers = {
            'Authorization': f'Bearer {api_key}',
            'Content-Type': 'application/json'
        }
        logger.info(f"模型接口初始化完成,基础URL: {base_url}")
    
    def _should_retry(self, status_code: Optional[int]) -> bool:
        return status_code == 429 or (status_code is not None and 500 <= status_code < 600)
    
    def _compute_backoff_seconds(self, attempt: int, retry_after: Optional[str]) -> float:
        # 优先使用服务端的 Retry-After
        if retry_after:
            try:
                return float(retry_after)
            except Exception:
                pass
        # 指数退避 + 抖动:1, 2, 4, 8 ... 上限10,并加入 0~300ms 抖动
        base = min(10, 2 ** attempt)
        return base + random.random() * 0.3
    
    def send_request(self, model: str, messages: list, **kwargs) -> Dict[str, Any]:
        payload = {
            'model': model,
            'messages': messages,
            **kwargs
        }
        max_retries = 3
        last_exc = None
        for attempt in range(max_retries + 1):
            try:
                logger.info(f"向模型 {model} 发送请求")
                response = requests.post(
                    f"{self.base_url}/chat/completions",
                    headers=self.headers,
                    json=payload,
                    timeout=60
                )
                if self._should_retry(response.status_code):
                    wait_s = self._compute_backoff_seconds(attempt, response.headers.get('Retry-After'))
                    logger.warning(f"模型 {model} 返回 {response.status_code}{wait_s:.2f}s 后重试 (attempt={attempt})")
                    time.sleep(wait_s)
                    continue
                response.raise_for_status()
                result = response.json()
                logger.info(f"模型 {model} 响应成功")
                return result
            except requests.exceptions.RequestException as e:
                last_exc = e
                status = getattr(e.response, 'status_code', None)
                if self._should_retry(status) and attempt < max_retries:
                    wait_s = self._compute_backoff_seconds(attempt, getattr(e.response, 'headers', {}).get('Retry-After'))
                    logger.warning(f"请求异常 {status}{wait_s:.2f}s 后重试 (attempt={attempt})")
                    time.sleep(wait_s)
                    continue
                logger.error(f"请求模型 {model} 失败: {str(e)}")
                raise
        # 如果走到这里,说明重试仍失败
        if last_exc:
            raise last_exc
    
    def send_stream_request(self, model: str, messages: list, callback: Callable[[str], None], **kwargs) -> str:
        payload = {
            'model': model,
            'messages': messages,
            'stream': True,
            **kwargs
        }
        max_retries = 3
        last_exc = None
        for attempt in range(max_retries + 1):
            full_response = ""
            try:
                logger.info(f"向模型 {model} 发送流式请求")
                response = requests.post(
                    f"{self.base_url}/chat/completions",
                    headers=self.headers,
                    json=payload,
                    timeout=60,
                    stream=True
                )
                if self._should_retry(response.status_code):
                    wait_s = self._compute_backoff_seconds(attempt, response.headers.get('Retry-After'))
                    logger.warning(f"模型 {model} 流式返回 {response.status_code}{wait_s:.2f}s 后重试 (attempt={attempt})")
                    time.sleep(wait_s)
                    continue
                response.raise_for_status()
                # 处理流式响应
                for line in response.iter_lines():
                    if line:
                        decoded_line = line.decode('utf-8')
                        if decoded_line.startswith("data: "):
                            data = decoded_line[6:]
                            if data != "[DONE]":
                                try:
                                    json_data = json.loads(data)
                                    content = json_data["choices"][0]["delta"].get("content", "")
                                    if content:
                                        full_response += content
                                        callback(content)
                                except json.JSONDecodeError:
                                    pass
                logger.info(f"模型 {model} 流式响应完成")
                return full_response
            except requests.exceptions.RequestException as e:
                last_exc = e
                status = getattr(e.response, 'status_code', None)
                if self._should_retry(status) and attempt < max_retries:
                    wait_s = self._compute_backoff_seconds(attempt, getattr(e.response, 'headers', {}).get('Retry-After'))
                    logger.warning(f"流式请求异常 {status}{wait_s:.2f}s 后重试 (attempt={attempt})")
                    time.sleep(wait_s)
                    continue
                logger.error(f"流式请求模型 {model} 失败: {str(e)}")
                raise
            except Exception as e:
                last_exc = e
                logger.error(f"处理流式响应时出错: {str(e)}")
                raise
        if last_exc:
            raise last_exc
    
    def get_response_text(self, response: Dict[str, Any]) -> str:
        try:
            return response['choices'][0]['message']['content']
        except (KeyError, IndexError) as e:
            logger.error(f"提取回复文本失败: {str(e)}")
            raise

class GLM45Interface(ModelInterface):
    """GLM-4.5模型接口"""
    
    def __init__(self, api_key: str):
        super().__init__(api_key, "https://api-inference.modelscope.cn/v1")
        self.model_name = "ZhipuAI/GLM-4.5"
        logger.info(f"GLM-4.5模型接口初始化完成")
    
    def chat(self, messages: list, temperature: float = 0.7, max_tokens: int = 8000) -> str:
        try:
            response = self.send_request(
                model=self.model_name,
                messages=messages,
                temperature=temperature,
                max_tokens=max_tokens
            )
            return self.get_response_text(response)
        except Exception as e:
            logger.error(f"GLM-4.5对话失败: {str(e)}")
            return f"GLM-4.5对话失败: {str(e)}"
    
    def chat_stream(self, messages: list, callback: Callable[[str], None], temperature: float = 0.7, max_tokens: int = 8000) -> str:
        try:
            return self.send_stream_request(
                model=self.model_name,
                messages=messages,
                callback=callback,
                temperature=temperature,
                max_tokens=max_tokens
            )
        except Exception as e:
            logger.error(f"GLM-4.5流式对话失败: {str(e)}")
            error_msg = f"GLM-4.5流式对话失败: {str(e)}"
            callback(f"\n{error_msg}\n")
            return error_msg

class DeepSeekV31Interface(ModelInterface):
    """DeepSeek-V3.1模型接口"""
    
    def __init__(self, api_key: str):
        super().__init__(api_key, "https://api-inference.modelscope.cn/v1")
        self.model_name = "deepseek-ai/DeepSeek-V3.1"
        logger.info(f"DeepSeek-V3.1模型接口初始化完成")
    
    def chat(self, messages: list, temperature: float = 0.7, max_tokens: int = 8000) -> str:
        try:
            response = self.send_request(
                model=self.model_name,
                messages=messages,
                temperature=temperature,
                max_tokens=max_tokens
            )
            return self.get_response_text(response)
        except Exception as e:
            logger.error(f"DeepSeek-V3.1对话失败: {str(e)}")
            return f"DeepSeek-V3.1对话失败: {str(e)}"
    
    def chat_stream(self, messages: list, callback: Callable[[str], None], temperature: float = 0.7, max_tokens: int = 8000) -> str:
        try:
            return self.send_stream_request(
                model=self.model_name,
                messages=messages,
                callback=callback,
                temperature=temperature,
                max_tokens=max_tokens 
            )
        except Exception as e:
            logger.error(f"DeepSeek-V3.1流式对话失败: {str(e)}")
            error_msg = f"DeepSeek-V3.1流式对话失败: {str(e)}"
            callback(f"\n{error_msg}\n")
            return error_msg

class QwenInterface(ModelInterface):
    """Qwen模型接口"""
    
    def __init__(self, api_key: str):
        super().__init__(api_key, "https://api-inference.modelscope.cn/v1")
        self.model_name = "Qwen/Qwen3-235B-A22B-Thinking-2507"
        logger.info(f"Qwen模型接口初始化完成")

    def chat(self, messages: list, temperature: float = 0.7, max_tokens: int = 8000) -> str:
        try:
            response = self.send_request(
                model=self.model_name,
                messages=messages,
                temperature=temperature,
                max_tokens=max_tokens
            )
            return self.get_response_text(response)
        except Exception as e:
            logger.error(f"Qwen对话失败: {str(e)}")
            return f"Qwen对话失败: {str(e)}"

    def chat_stream(self, messages: list, callback: Callable[[str], None], temperature: float = 0.7, max_tokens: int = 8000) -> str:
        try:
            return self.send_stream_request(
                model=self.model_name,
                messages=messages,
                callback=callback,
                temperature=temperature,
                max_tokens=max_tokens
            )
        except Exception as e:
            logger.error(f"Qwen流式对话失败: {str(e)}")
            error_msg = f"Qwen流式对话失败: {str(e)}"
            callback(f"\n{error_msg}\n")
            return error_msg

# 新增:Qwen Instruct 非思考版
class QwenInstructInterface(ModelInterface):
    """Qwen Instruct模型接口(非思考版)"""
    
    def __init__(self, api_key: str):
        super().__init__(api_key, "https://api-inference.modelscope.cn/v1")
        self.model_name = "Qwen/Qwen3-235B-A22B-Instruct-2507"
        logger.info(f"Qwen Instruct模型接口初始化完成")

    def chat(self, messages: list, temperature: float = 0.7, max_tokens: int = 8000) -> str:
        try:
            response = self.send_request(
                model=self.model_name,
                messages=messages,
                temperature=temperature,
                max_tokens=max_tokens
            )
            return self.get_response_text(response)
        except Exception as e:
            logger.error(f"Qwen Instruct对话失败: {str(e)}")
            return f"Qwen Instruct对话失败: {str(e)}"

    def chat_stream(self, messages: list, callback: Callable[[str], None], temperature: float = 0.7, max_tokens: int = 8000) -> str:
        try:
            return self.send_stream_request(
                model=self.model_name,
                messages=messages,
                callback=callback,
                temperature=temperature,
                max_tokens=max_tokens
            )
        except Exception as e:
            logger.error(f"Qwen Instruct流式对话失败: {str(e)}")
            error_msg = f"Qwen Instruct流式对话失败: {str(e)}"
            callback(f"\n{error_msg}\n")
            return error_msg

class ModelManager:
    """模型管理器,统一管理两个模型接口"""
    
    def __init__(self, api_key: str):
        self.api_key = api_key
        self.glm45 = GLM45Interface(api_key)
        self.deepseek_v31 = DeepSeekV31Interface(api_key)
        self.qwen = QwenInterface(api_key)
        self.qwen_instruct = QwenInstructInterface(api_key)
        logger.info("模型管理器初始化完成")
    
    def get_model(self, model_name: str) -> 'ModelInterface':
        if model_name.lower() == 'glm45':
            return self.glm45
        elif model_name.lower() == 'deepseek_v31':
            return self.deepseek_v31
        elif model_name.lower() == 'qwen':
            return self.qwen
        elif model_name.lower() == 'qwen_instruct':
            return self.qwen_instruct
        else:
            logger.error(f"不支持的模型名称: {model_name}")
            raise ValueError(f"不支持的模型名称: {model_name}")

# 测试代码
if __name__ == "__main__":
    # 测试模型接口
    api_key = "ms-b4690538-3224-493a-8f5b-4073d527f788"
    manager = ModelManager(api_key)
    
    # 测试GLM-4.5
    glm45 = manager.get_model('glm45')
    messages = [{"role": "user", "content": "你好,请简单介绍一下自己"}]
    
    print("=== 测试GLM-4.5普通对话 ===")
    response = glm45.chat(messages)
    print(f"GLM-4.5回复: {response}")
    
    print("\n=== 测试GLM-4.5流式对话 ===")
    def stream_callback(content):
        print(content, end='', flush=True)
    
    response = glm45.chat_stream(messages, stream_callback)
    print(f"\n完整回复: {response}")
    
    # 测试DeepSeek-V3.1
    deepseek_v31 = manager.get_model('deepseek_v31')
    messages = [{"role": "user", "content": "你好,请简单介绍一下自己"}]
    
    print("\n=== 测试DeepSeek-V3.1普通对话 ===")
    response = deepseek_v31.chat(messages)
    print(f"DeepSeek-V3.1回复: {response}")
    
    print("\n=== 测试DeepSeek-V3.1流式对话 ===")
    response = deepseek_v31.chat_stream(messages, stream_callback)
    print(f"\n完整回复: {response}")