File size: 42,558 Bytes
e7d5fd1
 
 
 
 
 
 
 
 
 
 
6dd6be7
7a99f73
e7d5fd1
 
3efffd7
6dd6be7
 
 
 
 
08b4075
e7d5fd1
6dd6be7
 
 
e7d5fd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a99f73
e7d5fd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069c9d4
e7d5fd1
 
 
 
 
 
 
 
 
 
 
 
 
 
7a99f73
e7d5fd1
 
 
 
 
 
 
24aae5c
 
e7d5fd1
 
 
 
 
 
7a99f73
e7d5fd1
069c9d4
 
 
e7d5fd1
 
 
 
 
 
 
 
6dd6be7
9710ff0
 
 
 
 
 
 
6dd6be7
9710ff0
 
 
 
 
 
 
 
6dd6be7
 
 
 
9710ff0
 
 
 
 
 
 
 
 
6dd6be7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9710ff0
 
 
 
 
6dd6be7
 
 
 
9710ff0
 
 
 
 
6dd6be7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a99f73
 
6dd6be7
 
 
 
 
7a99f73
31d92bd
 
 
 
 
 
 
e7d5fd1
 
 
 
 
24aae5c
e7d5fd1
 
 
 
 
 
 
 
6dd6be7
 
 
e7d5fd1
 
 
 
 
7a99f73
e7d5fd1
 
 
 
 
7a99f73
e7d5fd1
7a99f73
 
e7d5fd1
 
 
 
 
 
 
24aae5c
6dd6be7
 
 
7a99f73
6dd6be7
24aae5c
 
af7e837
6dd6be7
 
 
cc4237e
 
 
 
e7d5fd1
 
 
 
 
 
 
 
 
 
 
7a99f73
e7d5fd1
 
 
 
 
24aae5c
7a99f73
e7d5fd1
7a99f73
e7d5fd1
6dd6be7
24aae5c
f444923
6dd6be7
 
3efffd7
02b28a4
6dd6be7
e7d5fd1
7a99f73
 
 
 
24aae5c
7a99f73
 
6dd6be7
 
 
af7e837
 
7a99f73
 
 
 
af7e837
e7d5fd1
af7e837
 
7a99f73
af7e837
e7d5fd1
 
 
 
7a99f73
6dd6be7
e7d5fd1
 
24aae5c
7a99f73
e7d5fd1
 
7a99f73
e7d5fd1
 
 
 
6dd6be7
 
 
e7d5fd1
 
 
 
 
7a99f73
e7d5fd1
 
7a99f73
 
6dd6be7
 
 
e7d5fd1
7a99f73
 
 
24aae5c
6dd6be7
 
 
7a99f73
e7d5fd1
3efffd7
7a99f73
 
 
 
6dd6be7
 
 
3efffd7
7a99f73
3efffd7
7a99f73
e7d5fd1
24aae5c
 
3efffd7
7a99f73
 
e7d5fd1
af7e837
7a99f73
af7e837
 
6dd6be7
7a99f73
6dd6be7
7a99f73
 
 
 
 
6dd6be7
 
 
 
 
 
 
 
2ce4408
af7e837
 
 
19d3f04
6dd6be7
 
 
19d3f04
6dd6be7
 
 
 
 
 
 
 
 
 
 
19d3f04
 
6dd6be7
 
 
 
 
 
 
 
 
 
 
 
cc4237e
6dd6be7
 
 
 
 
 
 
 
 
 
 
 
 
 
cc4237e
6dd6be7
 
af7e837
6dd6be7
 
 
af7e837
 
 
 
 
6dd6be7
 
 
af7e837
 
 
 
 
 
 
 
 
6dd6be7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af7e837
 
 
 
cc4237e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24aae5c
7a99f73
 
 
 
24aae5c
3efffd7
24aae5c
 
e7d5fd1
6dd6be7
 
 
 
7a99f73
e7d5fd1
24aae5c
e7d5fd1
7a99f73
 
24aae5c
e7d5fd1
24aae5c
e7d5fd1
 
476896a
3efffd7
476896a
a263099
e7d5fd1
 
 
 
 
24aae5c
8d0a00b
 
 
6dd6be7
e7d5fd1
 
6dd6be7
e7d5fd1
 
 
6dd6be7
3bfbcd8
6dd6be7
 
 
 
 
 
 
 
 
 
 
 
e7d5fd1
 
 
109a138
24aae5c
521398c
24aae5c
 
 
 
 
 
 
521398c
e7d5fd1
521398c
24aae5c
02b28a4
 
521398c
02b28a4
 
 
 
 
 
e7d5fd1
521398c
af7e837
521398c
af7e837
6dd6be7
 
2ce4408
 
af7e837
 
 
521398c
af7e837
6dd6be7
 
2ce4408
 
af7e837
 
e7d5fd1
24aae5c
 
e7d5fd1
 
 
f16b25d
109a138
3b1f984
f16b25d
ad0d063
521398c
af7e837
6dc4ab0
af7e837
 
6dd6be7
2ce4408
 
af7e837
0aabdb6
cc4237e
af7e837
 
 
e7d5fd1
 
 
6dd6be7
e7d5fd1
 
a263099
 
 
3efffd7
 
 
 
 
 
 
 
 
 
 
 
e7d5fd1
 
24aae5c
3efffd7
e7d5fd1
 
3efffd7
 
 
24aae5c
3efffd7
 
 
 
6dd6be7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4402cdc
6dd6be7
 
 
 
 
 
fb5109a
6dd6be7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb5109a
6dd6be7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb5109a
6dd6be7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08b4075
 
6dd6be7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
AI大模型辩论系统Web版本
基于FastAPI的Web应用,提供图形用户界面的辩论系统
"""

import os
import sys
import json
import logging
from datetime import datetime, timezone, timedelta
from typing import Optional, Dict, Any
import importlib.util
import asyncio
import socket
import uuid
import math
import re
from fastapi import Query
from fastapi.responses import HTMLResponse, StreamingResponse
from urllib.parse import quote # 新增:导入URL编码工具

# 在代码开头强制设置终端编码为UTF-8(仅在Windows执行)
if os.name == 'nt':
    os.system('chcp 65001 > nul')

# 获取当前脚本文件所在目录的绝对路径
current_script_dir = os.path.dirname(os.path.abspath(__file__))

# 项目根目录 (即 '20250907_大模型辩论' 目录, 是 'src' 的上一级)
project_root = os.path.dirname(current_script_dir)

# 定义数据输入、输出和日志目录
DATA_DIR = os.path.join(project_root, 'data')
OUTPUT_DIR = os.path.join(project_root, 'output')
LOGS_DIR = os.path.join(project_root, 'logs')

# 确保目录存在
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(LOGS_DIR, exist_ok=True)

# 配置日志
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler(os.path.join(LOGS_DIR, '对话系统Web日志.log'), encoding='utf-8'),
        logging.StreamHandler(sys.stdout)
    ]
)
logger = logging.getLogger(__name__)

# 捕获警告并记录到日志
logging.captureWarnings(True)

# 导入FastAPI相关模块
try:
    from fastapi import FastAPI, Request, WebSocket, WebSocketDisconnect
    from fastapi.responses import HTMLResponse
    from fastapi.staticfiles import StaticFiles
    from fastapi.templating import Jinja2Templates
    import uvicorn
    from uvicorn.middleware.proxy_headers import ProxyHeadersMiddleware
    logger.info("FastAPI模块导入成功")
except ImportError as e:
    logger.error(f"导入FastAPI模块失败: {str(e)}")
    print("请安装FastAPI: pip install fastapi uvicorn")
    sys.exit(1)

# 导入自定义模块
try:
    # 动态导入模型接口模块
    model_interface_path = os.path.join(current_script_dir, "model_interface.py")
    model_interface_spec = importlib.util.spec_from_file_location("model_interface", model_interface_path)
    model_interface = importlib.util.module_from_spec(model_interface_spec)
    model_interface_spec.loader.exec_module(model_interface)
    
    # 动态导入对话控制器模块
    debate_controller_path = os.path.join(current_script_dir, "debate_controller.py")
    debate_controller_spec = importlib.util.spec_from_file_location("debate_controller", debate_controller_path)
    debate_controller = importlib.util.module_from_spec(debate_controller_spec)
    debate_controller_spec.loader.exec_module(debate_controller)
    
    # 从模块中获取需要的类
    ModelManager = model_interface.ModelManager
    ConversationMessage = debate_controller.ConversationMessage
    ConversationSession = debate_controller.ConversationSession
    
except Exception as e:
    logger.error(f"导入模块失败: {str(e)}")
    sys.exit(1)

# 创建FastAPI应用
app = FastAPI(title="AI大模型对话系统", description="基于FastAPI的AI大模型对话系统Web版本")

# 添加中间件以处理反向代理头信息
app.add_middleware(ProxyHeadersMiddleware, trusted_hosts="*")

# 设置静态文件目录
static_dir = os.path.join(project_root, "static")
app.mount("/static", StaticFiles(directory=static_dir), name="static")

# 设置模板目录
templates_dir = os.path.join(project_root, "templates")
templates = Jinja2Templates(directory=templates_dir)

# 补回:连接管理器
class ConnectionManager:
    """连接管理器,负责管理所有WebSocket连接及其状态"""
    def __init__(self):
        self.active_connections: Dict[WebSocket, Dict[str, Any]] = {}

    async def connect(self, websocket: WebSocket):
        await websocket.accept()
        self.active_connections[websocket] = {"session": None, "task": None, "judge_task": None, "conv_id": None, "judge_id": None}
        logger.info(f"新连接建立: {websocket.client}. 当前总连接数: {len(self.active_connections)}")

    def disconnect(self, websocket: WebSocket):
        if websocket in self.active_connections:
            task = self.active_connections[websocket].get("task")
            if task and not task.done():
                task.cancel()
                logger.info(f"连接 {websocket.client} 的对话任务已被取消。")
            jtask = self.active_connections[websocket].get("judge_task")
            if jtask and not jtask.done():
                jtask.cancel()
                logger.info(f"连接 {websocket.client} 的评判任务已被取消。")
            del self.active_connections[websocket]
            logger.info(f"连接断开: {websocket.client}. 当前总连接数: {len(self.active_connections)}")

    def get_session(self, websocket: WebSocket) -> Optional[ConversationSession]:
        return self.active_connections.get(websocket, {}).get("session")

    def get_task(self, websocket: WebSocket) -> Optional[asyncio.Task]:
        return self.active_connections.get(websocket, {}).get("task")

    def get_judge_task(self, websocket: WebSocket) -> Optional[asyncio.Task]:
        return self.active_connections.get(websocket, {}).get("judge_task")

    def set_conv_id(self, websocket: WebSocket, conv_id: str):
        if websocket in self.active_connections:
            self.active_connections[websocket]["conv_id"] = conv_id

    def get_conv_id(self, websocket: WebSocket) -> Optional[str]:
        return self.active_connections.get(websocket, {}).get("conv_id")

    def set_judge_id(self, websocket: WebSocket, judge_id: str):
        if websocket in self.active_connections:
            self.active_connections[websocket]["judge_id"] = judge_id

    def get_current_judge_id(self, websocket: WebSocket) -> Optional[str]:
        return self.active_connections.get(websocket, {}).get("judge_id")

    def set_conversation(self, websocket: WebSocket, session: ConversationSession, task: asyncio.Task):
        if websocket in self.active_connections:
            self.active_connections[websocket]["session"] = session
            self.active_connections[websocket]["task"] = task

    def set_judge_task(self, websocket: WebSocket, task: asyncio.Task):
        if websocket in self.active_connections:
            self.active_connections[websocket]["judge_task"] = task

    def clear_conversation(self, websocket: WebSocket):
        if websocket in self.active_connections:
            self.active_connections[websocket]["session"] = None
            self.active_connections[websocket]["task"] = None

    def cancel_all(self, websocket: WebSocket):
        if websocket in self.active_connections:
            t = self.active_connections[websocket].get("task")
            if t and not t.done():
                t.cancel()
            jt = self.active_connections[websocket].get("judge_task")
            if jt and not jt.done():
                jt.cancel()
            # 刷新流ID,确保旧任务输出被丢弃
            self.active_connections[websocket]["conv_id"] = str(uuid.uuid4())
            self.active_connections[websocket]["judge_id"] = str(uuid.uuid4())


def _get_api_key_from_env() -> str:
    """从多种环境变量名中获取API Key"""
    candidate_keys = [
        "MODELSCOPE_API_KEY", "MODELSCOPE_TOKEN", "MS_API_KEY",
        "MS_TOKEN", "API_KEY"
    ]
    for k in candidate_keys:
        v = os.environ.get(k)
        if v:
            logger.info(f"已从环境变量 {k} 读取到API Key(不显示具体值)")
            return v
    logger.warning("未在环境变量中找到ModelScope API Key,请在Space Secrets中设置 MODELSCOPE_API_KEY")
    return ""

# 实例化连接管理器和模型管理器
manager = ConnectionManager()
model_manager = ModelManager(_get_api_key_from_env())
# 新增:内存中的会话备份,避免必须写磁盘
recent_sessions: Dict[str, ConversationSession] = {}
# 新增:内存缓存最近一次评判结果
recent_judges: Dict[str, str] = {}

@app.on_event("startup")
async def startup_event():
    """应用启动时执行的事件"""
    os.makedirs(static_dir, exist_ok=True)
    os.makedirs(templates_dir, exist_ok=True)
    create_templates()

@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
    """主页路由,返回Web界面"""
    return templates.TemplateResponse("index.html", {
        "request": request,
        "title": "AI大模型对话系统"
    })

@app.get("/api/status")
async def get_status():
    """获取系统状态"""
    return {
        "status": "running",
        "timestamp": datetime.now().isoformat(),
        "models": ["glm45", "deepseek_v31", "qwen", "qwen_instruct"],
        "active_connections": len(manager.active_connections),
        "has_api_key": bool(_get_api_key_from_env())
    }

@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    """WebSocket端点,用于实时通信"""
    await manager.connect(websocket)
    try:
        while True:
            data = await websocket.receive_text()
            await handle_websocket_message(websocket, data)
    except WebSocketDisconnect:
        manager.disconnect(websocket)
    except Exception as e:
        logger.error(f"WebSocket处理错误: {str(e)}", exc_info=True)
        manager.disconnect(websocket)

async def handle_websocket_message(websocket: WebSocket, message: str):
    """处理WebSocket消息"""
    try:
        data = json.loads(message)
        action = data.get("action")
        
        if action == "start_conversation":
            # 强行停止正在进行的对话与评判
            manager.cancel_all(websocket)
            # 启动新对话(后台任务)
            new_task = asyncio.create_task(start_conversation(websocket, data))
            # 任务将在 start_conversation 内部注册到 manager 中
        elif action == "stop_conversation":
            await stop_conversation(websocket)
        elif action == "judge_debate":
            # 评判改为后台任务,并记录以便可取消
            jtask = asyncio.create_task(judge_debate(websocket, data))
            manager.set_judge_task(websocket, jtask)
        elif action == "summarize_collaboration":
            # 协作总结改为后台任务,并记录以便可取消
            stask = asyncio.create_task(summarize_collaboration(websocket, data))
            manager.set_judge_task(websocket, stask)
        else:
            await websocket.send_text(json.dumps({
                "type": "error",
                "message": f"未知操作: {action}"
            }))
    except json.JSONDecodeError:
        await websocket.send_text(json.dumps({
            "type": "error",
            "message": "无效的JSON格式"
        }))
    except Exception as e:
        logger.error(f"处理WebSocket消息时出错: {str(e)}", exc_info=True)
        await websocket.send_text(json.dumps({
            "type": "error",
            "message": f"处理消息时出错: {str(e)}"
        }))

async def start_conversation(websocket: WebSocket, data: dict):
    """开始一场独立的对话"""
    loop = asyncio.get_event_loop()
    session = None
    try:
        topic = data.get("topic", "真与善谁更重要?")
        mode = data.get("mode", "debate")
        rounds = int(data.get("rounds", 3))
        pro_model_name = data.get("pro_model", "deepseek_v31")
        con_model_name = data.get("con_model", "qwen_instruct")
        initial_prompt = data.get("initial_prompt", "").strip()
        initial_prompt_mode = data.get("initial_prompt_mode", "append")
        save_enabled = bool(data.get("save_records", False))
        
        session = ConversationSession(
            topic=topic, mode=mode, max_rounds=rounds, 
            pro_model=pro_model_name, con_model=con_model_name, 
            initial_prompt=initial_prompt, initial_prompt_mode=initial_prompt_mode
        )
        # 将新创建的session和当前任务关联到这个websocket连接
        manager.set_conversation(websocket, session, asyncio.current_task())
        # 刷新对话流ID
        conv_stream_id = str(uuid.uuid4())
        manager.set_conv_id(websocket, conv_stream_id)

        await websocket.send_text(json.dumps({ 
            "type": "conversation_started", "message": "对话已开始", 
            "topic": topic, "mode": mode, "rounds": rounds, 
            "pro_model": pro_model_name, "con_model": con_model_name,
            "debate_id": session.debate_id
        }))
        
        model_a = model_manager.get_model(pro_model_name)
        model_b = model_manager.get_model(con_model_name)
        session.start_time = datetime.now()
        speakers = [(pro_model_name, model_a), (con_model_name, model_b)]
        
        for i in range(rounds * 2):
            round_num = (i // 2) + 1
            if i % 2 == 0:
                session.current_round = round_num
                await websocket.send_text(json.dumps({ "type": "round_info", "message": f"—— 第({round_num}/{rounds})轮 ——" }))

            speaker_name, speaker_model = speakers[i % 2]
            is_pro = (i % 2 == 0)
            role = ("正方" if mode == 'debate' else "AI 1") if is_pro else ("反方" if mode == 'debate' else "AI 2")
            
            await websocket.send_text(json.dumps({ "type": "model_speaking", "model": speaker_name, "role": role }))
            prompt = session.generate_prompt(speaker_name)
            
            response_content = ""
            def stream_callback(content):
                nonlocal response_content
                # 丢弃旧流输出
                if manager.get_conv_id(websocket) != conv_stream_id:
                    return
                response_content += content
                asyncio.run_coroutine_threadsafe(
                    websocket.send_text(json.dumps({"type": "stream_content", "content": content})), loop
                )

            await loop.run_in_executor(None, speaker_model.chat_stream, session.get_messages_for_model(speaker_name) + [{"role": "user", "content": prompt}], stream_callback)
            await websocket.send_text(json.dumps({"type": "stream_end", "model": speaker_name}))

            session.add_message(ConversationMessage("user", prompt, "system"))
            session.add_message(ConversationMessage("assistant", response_content, speaker_name))
            save_conversation_record(session, save_enabled)
            # 新增:实时更新内存备份
            recent_sessions[session.debate_id] = session

        if session.is_active:
            session.end_time = datetime.now()
            session.is_active = False
            await websocket.send_text(json.dumps({ "type": "conversation_ended", "message": "=== 对话结束 ===" }))
            save_conversation_record(session, save_enabled)
            # 新增:结束时更新内存备份
            recent_sessions[session.debate_id] = session
            logger.info(f"对话 {session.debate_id} 正常结束。")
        
    except asyncio.CancelledError:
        if session:
            logger.info(f"对话任务 {session.debate_id} 被取消。")
            session.is_active = False
            session.end_time = datetime.now()
            save_conversation_record(session, bool(data.get("save_records", False)))
            # 新增:取消时也更新内存备份
            recent_sessions[session.debate_id] = session
            await websocket.send_text(json.dumps({
                "type": "conversation_stopped", "message": "对话已停止"
            }))
        raise
    except Exception as e:
        logger.error(f"对话过程中出错: {str(e)}", exc_info=True)
        await websocket.send_text(json.dumps({ "type": "error", "message": f"对话过程中出错: {str(e)}" }))
    finally:
        manager.clear_conversation(websocket)
        logger.info("连接的对话会话清理完毕。")

async def judge_debate(websocket: WebSocket, data: dict):
    """评判一场指定的对话"""
    loop = asyncio.get_event_loop()
    try:
        judge_model_name = data.get("judge_model", "qwen_instruct")
        debate_id = data.get("debate_id")
        save_enabled = bool(data.get("save_records", False))
        if not debate_id:
            await websocket.send_text(json.dumps({"type": "error", "message": "缺少对话ID无法评判。"}))
            return
        
        file_path = os.path.join(OUTPUT_DIR, "对话记录", f"{debate_id}.json")
        session_to_judge = None
        if os.path.exists(file_path):
            session_to_judge = ConversationSession.load_from_file(file_path)
        else:
            # 新增:优先使用内存备份,避免必须写磁盘
            session_to_judge = recent_sessions.get(debate_id)
            if not session_to_judge:
                await websocket.send_text(json.dumps({"type": "error", "message": f"找不到对话记录: {debate_id}(内存与磁盘均不存在)"}))
                return # 修复:此 return 必须在 if 块内部
        
        judge_model = model_manager.get_model(judge_model_name)
        
        assistant_messages = [msg for msg in session_to_judge.messages if msg.role == 'assistant']
        # 构造带轮次的实录
        total_msgs = len(assistant_messages)
        actual_rounds = math.ceil(total_msgs / 2) if total_msgs > 0 else 0
        transcript_parts = []
        total_rounds = session_to_judge.max_rounds
        for r in range(actual_rounds):
            transcript_parts.append(f"—— 第({r+1}/{total_rounds})轮 ——")
            pro_idx = r * 2
            con_idx = r * 2 + 1
            if pro_idx < total_msgs:
                pro_model = session_to_judge.pro_model
                transcript_parts.append(f"正方 ({pro_model}): {assistant_messages[pro_idx].content}")
            if con_idx < total_msgs:
                con_model = session_to_judge.con_model
                transcript_parts.append(f"反方 ({con_model}): {assistant_messages[con_idx].content}")
        debate_transcript = "\n\n".join(transcript_parts)
        
        if session_to_judge.mode == 'debate':
            judge_prompt = (
                f"你是一位专业的辩论评审。请基于以下对话实录,对双方的辩论表现进行专业评判。\n\n"
                f"对话模式:辩论\n"
                f"辩论话题:{session_to_judge.topic}\n"
                f"正方(AI 1):{session_to_judge.pro_model}\n"
                f"反方(AI 2):{session_to_judge.con_model}\n\n"
                f"实际轮次:{actual_rounds}(禁止杜撰额外轮次)\n\n"
                f"对话实录:\n{debate_transcript}\n\n"
                f"请严格按照以下步骤进行分析并输出:\n"
                f"1.  **结论先行(1-2句)**:直接指出哪一方更胜一筹,并给出最关键的1-2条理由。\n"
                f"2.  **维度对比表(Markdown 表格)**:从至少六个维度对双方评分/评述:立场清晰度、论据扎实度、反驳力度、逻辑结构、证据引用/事实性、聚焦度(针对性)。最后一列写明该维度的优势方。\n"
                f"3.  **证据引用**:逐点引用原文并标注\"第X轮-正/反\"来支撑判定,禁止引用不存在的轮次。\n"
                f"4.  **改进建议**:分别给正反双方各2-3条可执行的改进建议。"
            )
        else:
            judge_prompt = (
                    f"你是一位专业的协作评审。请基于以下对话实录,评估两位 AI 的协作质量与产出。\n\n"
                    f"对话模式:协作讨论\n"
                    f"协作任务:{session_to_judge.topic}\n"
                    f"AI 1:{session_to_judge.pro_model}\n"
                    f"AI 2:{session_to_judge.con_model}\n\n"
                    f"实际轮次:{actual_rounds}(禁止杜撰额外轮次)\n\n"
                    f"对话实录:\n{debate_transcript}\n\n"
                    f"请严格按照以下步骤进行分析并输出:\n"
                    f"1.  **总体评估(1-2句)**:先给出任务完成度与协作有效性的总体判断。\n"
                    f"2.  **协作维度表(Markdown 表格)**:从至少六个维度评述:目标对齐、信息共享/互补、方案可行性、风险识别、推进计划(时间/里程碑)、个人贡献度。最后一列说明哪一方贡献更关键。\n"
                    f"3.  **行动计划**:给出一份精炼的下一步行动清单(里程碑+负责人+时间节点)。引用原文时请标注\"第X轮-参与者\"。\n"
                    f"4.  **改进建议**:指出影响协作效率的关键瓶颈,并给出2-3条可落地的改进建议。"
            )
        
        # 刷新评判流ID
        judge_stream_id = str(uuid.uuid4())
        manager.set_judge_id(websocket, judge_stream_id)
        await websocket.send_text(json.dumps({"type": "judge_started", "model": judge_model_name}))
        
        response_content = ""
        def stream_callback(content):
            nonlocal response_content
            # 丢弃旧流输出
            if manager.get_current_judge_id(websocket) != judge_stream_id:
                return
            response_content += content
            asyncio.run_coroutine_threadsafe(
                websocket.send_text(json.dumps({"type": "judge_stream_content", "content": content})), loop
            )
        
        await loop.run_in_executor(None, judge_model.chat_stream, [{"role": "user", "content": judge_prompt}], stream_callback)
        await websocket.send_text(json.dumps({"type": "judge_stream_end", "model": judge_model_name}))
        logger.info(f"模型 {judge_model_name} 已完成评判。")

        # 可选:保存评判结果
        if save_enabled:
            try:
                judge_dir = os.path.join(OUTPUT_DIR, "评判记录")
                os.makedirs(judge_dir, exist_ok=True)
                judge_file = os.path.join(judge_dir, f"{debate_id}_judge_{judge_model_name}.md")
                with open(judge_file, "w", encoding="utf-8") as jf:
                    jf.write(f"# 评判结果\n\n对话ID: {debate_id}\n\n评判模型: {judge_model_name}\n\n---\n\n")
                    jf.write(response_content)
                logger.info(f"评判结果已保存: {judge_file}")
            except Exception as e:
                logger.error(f"保存评判结果失败: {str(e)}")
        # 新增:写入内存缓存,便于导出
        recent_judges[debate_id] = response_content

    except Exception as e:
        logger.error(f"评判过程中出错: {str(e)}", exc_info=True)
        await websocket.send_text(json.dumps({"type": "error", "message": f"评判过程中出错: {str(e)}"}))

async def summarize_collaboration(websocket: WebSocket, data: dict):
    """总结协作任务的对话内容"""
    loop = asyncio.get_event_loop()
    try:
        summary_model_name = data.get("summary_model", "qwen_instruct")
        debate_id = data.get("debate_id")
        save_enabled = bool(data.get("save_records", False))
        if not debate_id:
            await websocket.send_text(json.dumps({"type": "error", "message": "缺少对话ID无法总结。"}))
            return
        
        file_path = os.path.join(OUTPUT_DIR, "对话记录", f"{debate_id}.json")
        session_to_summarize = None
        if os.path.exists(file_path):
            session_to_summarize = ConversationSession.load_from_file(file_path)
        else:
            # 优先使用内存备份,避免必须写磁盘
            session_to_summarize = recent_sessions.get(debate_id)
            if not session_to_summarize:
                await websocket.send_text(json.dumps({"type": "error", "message": f"找不到对话记录: {debate_id}(内存与磁盘均不存在)"}))
                return
        
        summary_model = model_manager.get_model(summary_model_name)
        
        assistant_messages = [msg for msg in session_to_summarize.messages if msg.role == 'assistant']
        # 构造带轮次的实录
        total_msgs = len(assistant_messages)
        actual_rounds = math.ceil(total_msgs / 2) if total_msgs > 0 else 0
        transcript_parts = []
        total_rounds = session_to_summarize.max_rounds
        for r in range(actual_rounds):
            transcript_parts.append(f"—— 第({r+1}/{total_rounds})轮 ——")
            pro_idx = r * 2
            con_idx = r * 2 + 1
            if pro_idx < total_msgs:
                pro_model = session_to_summarize.pro_model
                transcript_parts.append(f"AI 1 ({pro_model}): {assistant_messages[pro_idx].content}")
            if con_idx < total_msgs:
                con_model = session_to_summarize.con_model
                transcript_parts.append(f"AI 2 ({con_model}): {assistant_messages[con_idx].content}")
        collaboration_transcript = "\n\n".join(transcript_parts)
        
        summary_prompt = (
            f"你是一位专业的会议记录员和内容总结专家。请基于以下协作对话实录,对两位AI的讨论内容进行全面总结。\n\n"
            f"对话模式:协作讨论\n"
            f"协作任务:{session_to_summarize.topic}\n"
            f"AI 1:{session_to_summarize.pro_model}\n"
            f"AI 2:{session_to_summarize.con_model}\n\n"
            f"实际轮次:{actual_rounds}(禁止杜撰额外轮次)\n\n"
            f"对话实录:\n{collaboration_transcript}\n\n"
            f"请严格按照以下步骤进行分析并输出:\n"
            f"1.  **任务概述**:简要描述协作任务的目标和背景。\n"
            f"2.  **主要观点**:总结两位AI在讨论中提出的主要观点和想法,按主题分类。\n"
            f"3.  **达成共识**:列出两位AI在讨论中达成的一致意见和共识。\n"
            f"4.  **分歧点**:指出两位AI在讨论中存在的不同意见或分歧。\n"
            f"5.  **最终结论**:总结协作讨论的最终结论或成果。\n"
            f"6.  **后续建议**:提出基于当前讨论的后续行动建议或需要进一步探讨的问题。"
        )
        
        # 刷新总结流ID
        summary_stream_id = str(uuid.uuid4())
        manager.set_judge_id(websocket, summary_stream_id)
        await websocket.send_text(json.dumps({"type": "summary_started", "model": summary_model_name}))
        
        response_content = ""
        def stream_callback(content):
            nonlocal response_content
            # 丢弃旧流输出
            if manager.get_current_judge_id(websocket) != summary_stream_id:
                return
            response_content += content
            asyncio.run_coroutine_threadsafe(
                websocket.send_text(json.dumps({"type": "summary_stream_content", "content": content})), loop
            )
        
        await loop.run_in_executor(None, summary_model.chat_stream, [{"role": "user", "content": summary_prompt}], stream_callback)
        await websocket.send_text(json.dumps({"type": "summary_stream_end", "model": summary_model_name}))
        logger.info(f"模型 {summary_model_name} 已完成协作总结。")

        # 可选:保存总结结果
        if save_enabled:
            try:
                summary_dir = os.path.join(OUTPUT_DIR, "总结记录")
                os.makedirs(summary_dir, exist_ok=True)
                summary_file = os.path.join(summary_dir, f"{debate_id}_summary_{summary_model_name}.md")
                with open(summary_file, "w", encoding="utf-8") as sf:
                    sf.write(f"# 协作总结\n\n对话ID: {debate_id}\n\n总结模型: {summary_model_name}\n\n---\n\n")
                    sf.write(response_content)
                logger.info(f"协作总结已保存: {summary_file}")
            except Exception as e:
                logger.error(f"保存协作总结失败: {str(e)}")
        # 写入内存缓存,便于导出
        recent_judges[debate_id] = response_content

    except Exception as e:
        logger.error(f"总结过程中出错: {str(e)}", exc_info=True)
        await websocket.send_text(json.dumps({"type": "error", "message": f"总结过程中出错: {str(e)}"}))

async def stop_conversation(websocket: WebSocket):
    """停止当前连接的对话"""
    task = manager.get_task(websocket)
    if task and not task.done():
        task.cancel()
        logger.info("发送取消请求到对话任务。")
    else:
        logger.warning("请求停止对话,但没有活动的任务。")
        await websocket.send_text(json.dumps({"type": "info", "message": "没有正在进行的对话可供停止。"}))

def save_conversation_record(session: ConversationSession, save_enabled: bool):
    """保存指定的对话记录(按需)"""
    if not save_enabled:
        return
    if session:
        try:
            output_dir = os.path.join(OUTPUT_DIR, "对话记录")
            os.makedirs(output_dir, exist_ok=True)
            file_path = os.path.join(output_dir, f"{session.debate_id}.json")
            session.save_to_file(file_path)
            logger.info(f"对话记录已保存: {file_path}")
        except Exception as e:
            logger.error(f"保存对话记录时出错: {str(e)}")

def create_templates():
    """创建HTML模板文件"""
    template_path = os.path.join(templates_dir, "index.html")
    # 始终覆盖模板文件,确保其与代码同步
    index_html = """
<!DOCTYPE html>
<html lang="zh-CN">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>AI大模型对话系统</title>
    <link rel="preconnect" href="https://fonts.googleapis.com">
    <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
    <link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&family=Noto+Sans+SC:wght@400;500;700&display=swap" rel="stylesheet">
    <link rel="stylesheet" href="{{ url_for('static', path='css/style.css') }}?v=20250908a">
    <script src="https://cdn.jsdelivr.net/npm/marked/marked.min.js"></script>
    <script src="https://cdn.jsdelivr.net/npm/dompurify/dist/purify.min.js"></script>

</head>
<body>
    <div class="container">
        <div class="header">
            <div class="header-title">
                <h1>AI大模型对话系统</h1>
                <p>观看两个AI大模型实时对话</p>
            </div>
            <div class="header-controls">
                <select id="exportFormat">
                    <option value="md" selected>Markdown (.md)</option>
                    <option value="json">JSON (.json)</option>
                    <option value="txt">文本 (.txt)</option>
                </select>
                <button id="exportAllBtn" disabled>导出记录</button>
            </div>
        </div>
        
        <div class="main-layout">
            <div class="sidebar">
                <h3 class="panel-title">设置</h3>
                <div class="control-group">
                    <label>对话模式</label>
                    <div class="radio-group">
                        <input type="radio" id="modeDebate" name="mode" value="debate" checked>
                        <label for="modeDebate">辩论</label>
                        <input type="radio" id="modeDiscussion" name="mode" value="discussion">
                        <label for="modeDiscussion">协作讨论</label>
                    </div>
                </div>
                <div class="control-group"><label for="topic">对话任务/话题</label><input type="text" id="topic" value="真与善谁更重要?"></div>
                <div class="control-group">
                    <label for="initialPrompt">自定义初始提示 (可选)</label>
                    <textarea id="initialPrompt" rows="6" placeholder="默认提示示例:'你将作为正方,就[话题]进行辩论...'。你可以在此输入额外指示(默认追加),或选择覆盖默认提示。"></textarea>
                </div>
                <div class="control-group prompt-mode-group">
                    <label>提示词模式</label>
                    <div class="radio-group">
                        <input type="radio" id="promptAppend" name="promptMode" value="append" checked>
                        <label for="promptAppend">追加</label>
                        <input type="radio" id="promptOverride" name="promptMode" value="override">
                        <label for="promptOverride">覆盖</label>
                    </div>
                </div>
                <div class="control-group"><label for="rounds">轮数</label><input type="number" id="rounds" min="1" max="10" value="3"></div>
                <div class="control-group">
                    <label for="proModel">AI 1 (正方)</label>
                    <select id="proModel">
                        <option value="deepseek_v31" selected>deepseek-ai/DeepSeek-V3.1</option>
                        <option value="qwen_instruct">Qwen/Qwen3-235B-Instruct</option>
                        <option value="qwen">Qwen/Qwen3-235B-Thinking</option>
                        <option value="glm45">ZhipuAI/GLM-4.5</option>
                    </select>
                </div>
                <div class="control-group">
                    <label for="conModel">AI 2 (反方)</label>
                    <select id="conModel">
                        <option value="deepseek_v31">deepseek-ai/DeepSeek-V3.1</option>
                        <option value="qwen_instruct" selected>Qwen/Qwen3-235B-Instruct</option>
                        <option value="qwen">Qwen/Qwen3-235B-Thinking</option>
                        <option value="glm45">ZhipuAI/GLM-4.5</option>
                    </select>
                </div>
                <div class="controls">
                    <button id="startBtn" disabled>开始对话</button>
                    <button id="stopBtn" disabled>停止对话</button>
                </div>
            </div>
            <div class="chat-area">
                <div class="conversation-wrapper">
                    <h3 class="panel-title">对话区</h3>
                    <div id="output" class="output-container"></div>
                </div>
                <div id="judge-section" class="judge-section">
                    <h3 class="panel-title" id="judgeSectionTitle">评判区</h3>
                    <div class="judge-controls">
                        <label for="judgeModel">选择总结模型</label>
                        <select id="judgeModel">
                            <option value="deepseek_v31">deepseek-ai/DeepSeek-V3.1</option>
                            <option value="qwen_instruct" selected>Qwen/Qwen3-235B-Instruct</option>
                            <option value="qwen">Qwen/Qwen3-235B-Thinking</option>
                            <option value="glm45">ZhipuAI/GLM-4.5</option>
                        </select>
                        <button id="judgeBtn" disabled>评判双方辩论表现</button>
                        <button id="summaryBtn" disabled style="display:none;">总结对话</button>
                    </div>
                    <div id="judge-output" class="output-container judge-output"></div>
                </div>
            </div>
        </div>
    </div>
    <script src="{{ url_for('static', path='js/script.js') }}?v=20250908a"></script>
</body>
</html>"""
    with open(template_path, "w", encoding="utf-8") as f:
        f.write(index_html)
    logger.info("Web应用模板文件 'index.html' 已被强制更新。")


def get_local_ip():
    """获取本机局域网IP地址"""
    try:
        with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as s:
            # 连接到一个公共DNS服务器的IP(不会真的发送数据)
            s.connect(("8.8.8.8", 80))
            return s.getsockname()[0]
    except Exception:
        return "127.0.0.1"  # 如果获取失败,返回本地回环地址


if __name__ == "__main__":
    # 本地运行时,FastAPI的启动事件也会触发,所以模板创建是安全的
    
    # 智能端口切换:优先使用环境变量PORT,否则默认为8000
    port = int(os.environ.get("PORT", 8000))
    local_ip = get_local_ip()
    
    logger.info("="*50)
    logger.info("AI大模型对话系统已启动")
    logger.info(f"  - 本机访问: http://localhost:{port}")
    logger.info(f"  - 局域网访问: http://{local_ip}:{port}")
    logger.info("="*50)
    
    uvicorn.run(app, host="0.0.0.0", port=port) 

@app.get("/api/export")
async def export_records(debate_id: str = Query(...), format: str = Query("md")):
    """导出指定对话的记录(对话+最近一次评判),不落盘,直接下载。"""
    fmt = (format or "md").lower()
    session = recent_sessions.get(debate_id)
    if not session:
        # 兜底:尝试磁盘
        file_path = os.path.join(OUTPUT_DIR, "对话记录", f"{debate_id}.json")
        if os.path.exists(file_path):
            session = ConversationSession.load_from_file(file_path)
    if not session:
        return HTMLResponse(content=f"<pre>找不到对话记录: {debate_id}</pre>", status_code=404)

    judge_md = recent_judges.get(debate_id, "")
    # 仅保留双方模型的回答(assistant),不导出提示词/用户消息
    assistant_messages = [m for m in session.messages if m.role == 'assistant']
    # 导出时间(优先用会话开始时间),统一转换为东八区,精确到分钟
    base_dt = session.start_time or datetime.utcnow()
    if base_dt.tzinfo is None:
        beijing_dt = base_dt + timedelta(hours=8)
    else:
        beijing_dt = base_dt.astimezone(timezone(timedelta(hours=8)))
    ts = beijing_dt.strftime('%Y-%m-%d %H:%M (UTC+8)')
    filename_ts = beijing_dt.strftime('%Y%m%d_%H%M%S')
    
    # 清理话题作文文件名安全的部分
    topic = session.topic or "未命名对话" # 修复:为None或空话题提供默认值
    sanitized_topic = re.sub(r'[\\/*?:"<>|]', "_", topic).replace(" ", "_")
    sanitized_topic = (sanitized_topic[:50] + '...') if len(sanitized_topic) > 50 else sanitized_topic

    if fmt == 'json':
        payload = {
            'debate_id': debate_id,
            'topic': session.topic,
            'export_time': ts,
            'messages': [
                {
                    'role': m.role,
                    'content': m.content,
                    'model': m.model_name,
                    'round': (idx // 2) + 1,
                    'round_total': session.max_rounds,
                    'round_label': f"{(idx // 2) + 1}/{session.max_rounds}"
                } for idx, m in enumerate(assistant_messages)
            ],
            'judge_markdown': judge_md
        }
        content = json.dumps(payload, ensure_ascii=False, indent=2)
        filename = f"{filename_ts}_{sanitized_topic}.json"
        media = "application/json; charset=utf-8"
    elif fmt == 'txt':
        parts = [f"对话ID: {debate_id}", f"话题: {session.topic}", f"导出时间: {ts}", "---"]
        total_rounds = session.max_rounds
        for i, m in enumerate(assistant_messages):
            round_no = (i // 2) + 1
            # 每轮开始插入分隔
            if i % 2 == 0:
                parts.append(f"—— 第({round_no}/{total_rounds})轮 ——")
            # 推断角色与模型
            is_pro = (i % 2 == 0)
            model_name = session.pro_model if is_pro else session.con_model
            role_cn = "正方" if is_pro else "反方"
            parts.append(f"{role_cn} ({model_name}):\n{m.content}\n")
        if judge_md:
            parts.append("\n==== 评判结果 ====")
            parts.append(md_to_text(judge_md))
        content = "\n".join(parts)
        filename = f"{filename_ts}_{sanitized_topic}.txt"
        media = "text/plain; charset=utf-8"
    else:  # md
        parts = ["# 对话记录", f"对话ID: {debate_id}", f"话题: {session.topic}", f"导出时间: {ts}", ""]
        total_rounds = session.max_rounds
        for i, m in enumerate(assistant_messages):
            round_no = (i // 2) + 1
            if i % 2 == 0:
                parts.append(f"### 第({round_no}/{total_rounds})轮")
                parts.append("")
            is_pro = (i % 2 == 0)
            model_name = session.pro_model if is_pro else session.con_model
            role_cn = "正方" if is_pro else "反方"
            parts.append(f"**{role_cn} ({model_name})**:")
            parts.append("")
            parts.append(m.content)
            parts.append("")
        if judge_md:
            parts += ["---", "# 评判结果", "", judge_md]
        content = "\n".join(parts)
        filename = f"{filename_ts}_{sanitized_topic}.md"
        media = "text/markdown; charset=utf-8"

    encoded_filename = quote(filename)
    headers = {"Content-Disposition": f"attachment; filename*=UTF-8''{encoded_filename}"}
    return StreamingResponse(iter([content.encode('utf-8')]), media_type=media, headers=headers) 

# 简单将Markdown转为纯文本,用于TXT导出
def md_to_text(md: str) -> str:
    if not md:
        return ""
    text = md
    # 代码块三反引号去除
    text = re.sub(r"```[\s\S]*?```", lambda m: re.sub(r"^```.*\n|\n```$", "", m.group(0)), text)
    # 行内代码
    text = re.sub(r"`([^`]+)`", r"\1", text)
    # 粗体/斜体
    text = re.sub(r"\*\*([^*]+)\*\*", r"\1", text)
    text = re.sub(r"__([^_]+)__", r"\1", text)
    text = re.sub(r"\*([^*]+)\*", r"\1", text)
    text = re.sub(r"_([^_]+)_", r"\1", text)
    # 链接与图片
    text = re.sub(r"!\[([^\]]*)\]\([^)]*\)", r"\1", text)
    text = re.sub(r"\[([^\]]+)\]\([^)]*\)", r"\1", text)
    # 标题、引用、水平线
    text = re.sub(r"^>\s*", "", text, flags=re.MULTILINE)
    text = re.sub(r"^#{1,6}\s*", "", text, flags=re.MULTILINE)
    text = re.sub(r"^\s*-{3,}\s*$", "", text, flags=re.MULTILINE)
    # 表格竖线与分隔行
    text = re.sub(r"^\|?\s*-+\s*(\|\s*-+\s*)+\|?\s*$", "", text, flags=re.MULTILINE)
    text = text.replace("|", " |")
    return text