Spaces:
Sleeping
Sleeping
File size: 42,558 Bytes
e7d5fd1 6dd6be7 7a99f73 e7d5fd1 3efffd7 6dd6be7 08b4075 e7d5fd1 6dd6be7 e7d5fd1 7a99f73 e7d5fd1 069c9d4 e7d5fd1 7a99f73 e7d5fd1 24aae5c e7d5fd1 7a99f73 e7d5fd1 069c9d4 e7d5fd1 6dd6be7 9710ff0 6dd6be7 9710ff0 6dd6be7 9710ff0 6dd6be7 9710ff0 6dd6be7 9710ff0 6dd6be7 7a99f73 6dd6be7 7a99f73 31d92bd e7d5fd1 24aae5c e7d5fd1 6dd6be7 e7d5fd1 7a99f73 e7d5fd1 7a99f73 e7d5fd1 7a99f73 e7d5fd1 24aae5c 6dd6be7 7a99f73 6dd6be7 24aae5c af7e837 6dd6be7 cc4237e e7d5fd1 7a99f73 e7d5fd1 24aae5c 7a99f73 e7d5fd1 7a99f73 e7d5fd1 6dd6be7 24aae5c f444923 6dd6be7 3efffd7 02b28a4 6dd6be7 e7d5fd1 7a99f73 24aae5c 7a99f73 6dd6be7 af7e837 7a99f73 af7e837 e7d5fd1 af7e837 7a99f73 af7e837 e7d5fd1 7a99f73 6dd6be7 e7d5fd1 24aae5c 7a99f73 e7d5fd1 7a99f73 e7d5fd1 6dd6be7 e7d5fd1 7a99f73 e7d5fd1 7a99f73 6dd6be7 e7d5fd1 7a99f73 24aae5c 6dd6be7 7a99f73 e7d5fd1 3efffd7 7a99f73 6dd6be7 3efffd7 7a99f73 3efffd7 7a99f73 e7d5fd1 24aae5c 3efffd7 7a99f73 e7d5fd1 af7e837 7a99f73 af7e837 6dd6be7 7a99f73 6dd6be7 7a99f73 6dd6be7 2ce4408 af7e837 19d3f04 6dd6be7 19d3f04 6dd6be7 19d3f04 6dd6be7 cc4237e 6dd6be7 cc4237e 6dd6be7 af7e837 6dd6be7 af7e837 6dd6be7 af7e837 6dd6be7 af7e837 cc4237e 24aae5c 7a99f73 24aae5c 3efffd7 24aae5c e7d5fd1 6dd6be7 7a99f73 e7d5fd1 24aae5c e7d5fd1 7a99f73 24aae5c e7d5fd1 24aae5c e7d5fd1 476896a 3efffd7 476896a a263099 e7d5fd1 24aae5c 8d0a00b 6dd6be7 e7d5fd1 6dd6be7 e7d5fd1 6dd6be7 3bfbcd8 6dd6be7 e7d5fd1 109a138 24aae5c 521398c 24aae5c 521398c e7d5fd1 521398c 24aae5c 02b28a4 521398c 02b28a4 e7d5fd1 521398c af7e837 521398c af7e837 6dd6be7 2ce4408 af7e837 521398c af7e837 6dd6be7 2ce4408 af7e837 e7d5fd1 24aae5c e7d5fd1 f16b25d 109a138 3b1f984 f16b25d ad0d063 521398c af7e837 6dc4ab0 af7e837 6dd6be7 2ce4408 af7e837 0aabdb6 cc4237e af7e837 e7d5fd1 6dd6be7 e7d5fd1 a263099 3efffd7 e7d5fd1 24aae5c 3efffd7 e7d5fd1 3efffd7 24aae5c 3efffd7 6dd6be7 4402cdc 6dd6be7 fb5109a 6dd6be7 fb5109a 6dd6be7 fb5109a 6dd6be7 08b4075 6dd6be7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
AI大模型辩论系统Web版本
基于FastAPI的Web应用,提供图形用户界面的辩论系统
"""
import os
import sys
import json
import logging
from datetime import datetime, timezone, timedelta
from typing import Optional, Dict, Any
import importlib.util
import asyncio
import socket
import uuid
import math
import re
from fastapi import Query
from fastapi.responses import HTMLResponse, StreamingResponse
from urllib.parse import quote # 新增:导入URL编码工具
# 在代码开头强制设置终端编码为UTF-8(仅在Windows执行)
if os.name == 'nt':
os.system('chcp 65001 > nul')
# 获取当前脚本文件所在目录的绝对路径
current_script_dir = os.path.dirname(os.path.abspath(__file__))
# 项目根目录 (即 '20250907_大模型辩论' 目录, 是 'src' 的上一级)
project_root = os.path.dirname(current_script_dir)
# 定义数据输入、输出和日志目录
DATA_DIR = os.path.join(project_root, 'data')
OUTPUT_DIR = os.path.join(project_root, 'output')
LOGS_DIR = os.path.join(project_root, 'logs')
# 确保目录存在
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(LOGS_DIR, exist_ok=True)
# 配置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(os.path.join(LOGS_DIR, '对话系统Web日志.log'), encoding='utf-8'),
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
# 捕获警告并记录到日志
logging.captureWarnings(True)
# 导入FastAPI相关模块
try:
from fastapi import FastAPI, Request, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
import uvicorn
from uvicorn.middleware.proxy_headers import ProxyHeadersMiddleware
logger.info("FastAPI模块导入成功")
except ImportError as e:
logger.error(f"导入FastAPI模块失败: {str(e)}")
print("请安装FastAPI: pip install fastapi uvicorn")
sys.exit(1)
# 导入自定义模块
try:
# 动态导入模型接口模块
model_interface_path = os.path.join(current_script_dir, "model_interface.py")
model_interface_spec = importlib.util.spec_from_file_location("model_interface", model_interface_path)
model_interface = importlib.util.module_from_spec(model_interface_spec)
model_interface_spec.loader.exec_module(model_interface)
# 动态导入对话控制器模块
debate_controller_path = os.path.join(current_script_dir, "debate_controller.py")
debate_controller_spec = importlib.util.spec_from_file_location("debate_controller", debate_controller_path)
debate_controller = importlib.util.module_from_spec(debate_controller_spec)
debate_controller_spec.loader.exec_module(debate_controller)
# 从模块中获取需要的类
ModelManager = model_interface.ModelManager
ConversationMessage = debate_controller.ConversationMessage
ConversationSession = debate_controller.ConversationSession
except Exception as e:
logger.error(f"导入模块失败: {str(e)}")
sys.exit(1)
# 创建FastAPI应用
app = FastAPI(title="AI大模型对话系统", description="基于FastAPI的AI大模型对话系统Web版本")
# 添加中间件以处理反向代理头信息
app.add_middleware(ProxyHeadersMiddleware, trusted_hosts="*")
# 设置静态文件目录
static_dir = os.path.join(project_root, "static")
app.mount("/static", StaticFiles(directory=static_dir), name="static")
# 设置模板目录
templates_dir = os.path.join(project_root, "templates")
templates = Jinja2Templates(directory=templates_dir)
# 补回:连接管理器
class ConnectionManager:
"""连接管理器,负责管理所有WebSocket连接及其状态"""
def __init__(self):
self.active_connections: Dict[WebSocket, Dict[str, Any]] = {}
async def connect(self, websocket: WebSocket):
await websocket.accept()
self.active_connections[websocket] = {"session": None, "task": None, "judge_task": None, "conv_id": None, "judge_id": None}
logger.info(f"新连接建立: {websocket.client}. 当前总连接数: {len(self.active_connections)}")
def disconnect(self, websocket: WebSocket):
if websocket in self.active_connections:
task = self.active_connections[websocket].get("task")
if task and not task.done():
task.cancel()
logger.info(f"连接 {websocket.client} 的对话任务已被取消。")
jtask = self.active_connections[websocket].get("judge_task")
if jtask and not jtask.done():
jtask.cancel()
logger.info(f"连接 {websocket.client} 的评判任务已被取消。")
del self.active_connections[websocket]
logger.info(f"连接断开: {websocket.client}. 当前总连接数: {len(self.active_connections)}")
def get_session(self, websocket: WebSocket) -> Optional[ConversationSession]:
return self.active_connections.get(websocket, {}).get("session")
def get_task(self, websocket: WebSocket) -> Optional[asyncio.Task]:
return self.active_connections.get(websocket, {}).get("task")
def get_judge_task(self, websocket: WebSocket) -> Optional[asyncio.Task]:
return self.active_connections.get(websocket, {}).get("judge_task")
def set_conv_id(self, websocket: WebSocket, conv_id: str):
if websocket in self.active_connections:
self.active_connections[websocket]["conv_id"] = conv_id
def get_conv_id(self, websocket: WebSocket) -> Optional[str]:
return self.active_connections.get(websocket, {}).get("conv_id")
def set_judge_id(self, websocket: WebSocket, judge_id: str):
if websocket in self.active_connections:
self.active_connections[websocket]["judge_id"] = judge_id
def get_current_judge_id(self, websocket: WebSocket) -> Optional[str]:
return self.active_connections.get(websocket, {}).get("judge_id")
def set_conversation(self, websocket: WebSocket, session: ConversationSession, task: asyncio.Task):
if websocket in self.active_connections:
self.active_connections[websocket]["session"] = session
self.active_connections[websocket]["task"] = task
def set_judge_task(self, websocket: WebSocket, task: asyncio.Task):
if websocket in self.active_connections:
self.active_connections[websocket]["judge_task"] = task
def clear_conversation(self, websocket: WebSocket):
if websocket in self.active_connections:
self.active_connections[websocket]["session"] = None
self.active_connections[websocket]["task"] = None
def cancel_all(self, websocket: WebSocket):
if websocket in self.active_connections:
t = self.active_connections[websocket].get("task")
if t and not t.done():
t.cancel()
jt = self.active_connections[websocket].get("judge_task")
if jt and not jt.done():
jt.cancel()
# 刷新流ID,确保旧任务输出被丢弃
self.active_connections[websocket]["conv_id"] = str(uuid.uuid4())
self.active_connections[websocket]["judge_id"] = str(uuid.uuid4())
def _get_api_key_from_env() -> str:
"""从多种环境变量名中获取API Key"""
candidate_keys = [
"MODELSCOPE_API_KEY", "MODELSCOPE_TOKEN", "MS_API_KEY",
"MS_TOKEN", "API_KEY"
]
for k in candidate_keys:
v = os.environ.get(k)
if v:
logger.info(f"已从环境变量 {k} 读取到API Key(不显示具体值)")
return v
logger.warning("未在环境变量中找到ModelScope API Key,请在Space Secrets中设置 MODELSCOPE_API_KEY")
return ""
# 实例化连接管理器和模型管理器
manager = ConnectionManager()
model_manager = ModelManager(_get_api_key_from_env())
# 新增:内存中的会话备份,避免必须写磁盘
recent_sessions: Dict[str, ConversationSession] = {}
# 新增:内存缓存最近一次评判结果
recent_judges: Dict[str, str] = {}
@app.on_event("startup")
async def startup_event():
"""应用启动时执行的事件"""
os.makedirs(static_dir, exist_ok=True)
os.makedirs(templates_dir, exist_ok=True)
create_templates()
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
"""主页路由,返回Web界面"""
return templates.TemplateResponse("index.html", {
"request": request,
"title": "AI大模型对话系统"
})
@app.get("/api/status")
async def get_status():
"""获取系统状态"""
return {
"status": "running",
"timestamp": datetime.now().isoformat(),
"models": ["glm45", "deepseek_v31", "qwen", "qwen_instruct"],
"active_connections": len(manager.active_connections),
"has_api_key": bool(_get_api_key_from_env())
}
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
"""WebSocket端点,用于实时通信"""
await manager.connect(websocket)
try:
while True:
data = await websocket.receive_text()
await handle_websocket_message(websocket, data)
except WebSocketDisconnect:
manager.disconnect(websocket)
except Exception as e:
logger.error(f"WebSocket处理错误: {str(e)}", exc_info=True)
manager.disconnect(websocket)
async def handle_websocket_message(websocket: WebSocket, message: str):
"""处理WebSocket消息"""
try:
data = json.loads(message)
action = data.get("action")
if action == "start_conversation":
# 强行停止正在进行的对话与评判
manager.cancel_all(websocket)
# 启动新对话(后台任务)
new_task = asyncio.create_task(start_conversation(websocket, data))
# 任务将在 start_conversation 内部注册到 manager 中
elif action == "stop_conversation":
await stop_conversation(websocket)
elif action == "judge_debate":
# 评判改为后台任务,并记录以便可取消
jtask = asyncio.create_task(judge_debate(websocket, data))
manager.set_judge_task(websocket, jtask)
elif action == "summarize_collaboration":
# 协作总结改为后台任务,并记录以便可取消
stask = asyncio.create_task(summarize_collaboration(websocket, data))
manager.set_judge_task(websocket, stask)
else:
await websocket.send_text(json.dumps({
"type": "error",
"message": f"未知操作: {action}"
}))
except json.JSONDecodeError:
await websocket.send_text(json.dumps({
"type": "error",
"message": "无效的JSON格式"
}))
except Exception as e:
logger.error(f"处理WebSocket消息时出错: {str(e)}", exc_info=True)
await websocket.send_text(json.dumps({
"type": "error",
"message": f"处理消息时出错: {str(e)}"
}))
async def start_conversation(websocket: WebSocket, data: dict):
"""开始一场独立的对话"""
loop = asyncio.get_event_loop()
session = None
try:
topic = data.get("topic", "真与善谁更重要?")
mode = data.get("mode", "debate")
rounds = int(data.get("rounds", 3))
pro_model_name = data.get("pro_model", "deepseek_v31")
con_model_name = data.get("con_model", "qwen_instruct")
initial_prompt = data.get("initial_prompt", "").strip()
initial_prompt_mode = data.get("initial_prompt_mode", "append")
save_enabled = bool(data.get("save_records", False))
session = ConversationSession(
topic=topic, mode=mode, max_rounds=rounds,
pro_model=pro_model_name, con_model=con_model_name,
initial_prompt=initial_prompt, initial_prompt_mode=initial_prompt_mode
)
# 将新创建的session和当前任务关联到这个websocket连接
manager.set_conversation(websocket, session, asyncio.current_task())
# 刷新对话流ID
conv_stream_id = str(uuid.uuid4())
manager.set_conv_id(websocket, conv_stream_id)
await websocket.send_text(json.dumps({
"type": "conversation_started", "message": "对话已开始",
"topic": topic, "mode": mode, "rounds": rounds,
"pro_model": pro_model_name, "con_model": con_model_name,
"debate_id": session.debate_id
}))
model_a = model_manager.get_model(pro_model_name)
model_b = model_manager.get_model(con_model_name)
session.start_time = datetime.now()
speakers = [(pro_model_name, model_a), (con_model_name, model_b)]
for i in range(rounds * 2):
round_num = (i // 2) + 1
if i % 2 == 0:
session.current_round = round_num
await websocket.send_text(json.dumps({ "type": "round_info", "message": f"—— 第({round_num}/{rounds})轮 ——" }))
speaker_name, speaker_model = speakers[i % 2]
is_pro = (i % 2 == 0)
role = ("正方" if mode == 'debate' else "AI 1") if is_pro else ("反方" if mode == 'debate' else "AI 2")
await websocket.send_text(json.dumps({ "type": "model_speaking", "model": speaker_name, "role": role }))
prompt = session.generate_prompt(speaker_name)
response_content = ""
def stream_callback(content):
nonlocal response_content
# 丢弃旧流输出
if manager.get_conv_id(websocket) != conv_stream_id:
return
response_content += content
asyncio.run_coroutine_threadsafe(
websocket.send_text(json.dumps({"type": "stream_content", "content": content})), loop
)
await loop.run_in_executor(None, speaker_model.chat_stream, session.get_messages_for_model(speaker_name) + [{"role": "user", "content": prompt}], stream_callback)
await websocket.send_text(json.dumps({"type": "stream_end", "model": speaker_name}))
session.add_message(ConversationMessage("user", prompt, "system"))
session.add_message(ConversationMessage("assistant", response_content, speaker_name))
save_conversation_record(session, save_enabled)
# 新增:实时更新内存备份
recent_sessions[session.debate_id] = session
if session.is_active:
session.end_time = datetime.now()
session.is_active = False
await websocket.send_text(json.dumps({ "type": "conversation_ended", "message": "=== 对话结束 ===" }))
save_conversation_record(session, save_enabled)
# 新增:结束时更新内存备份
recent_sessions[session.debate_id] = session
logger.info(f"对话 {session.debate_id} 正常结束。")
except asyncio.CancelledError:
if session:
logger.info(f"对话任务 {session.debate_id} 被取消。")
session.is_active = False
session.end_time = datetime.now()
save_conversation_record(session, bool(data.get("save_records", False)))
# 新增:取消时也更新内存备份
recent_sessions[session.debate_id] = session
await websocket.send_text(json.dumps({
"type": "conversation_stopped", "message": "对话已停止"
}))
raise
except Exception as e:
logger.error(f"对话过程中出错: {str(e)}", exc_info=True)
await websocket.send_text(json.dumps({ "type": "error", "message": f"对话过程中出错: {str(e)}" }))
finally:
manager.clear_conversation(websocket)
logger.info("连接的对话会话清理完毕。")
async def judge_debate(websocket: WebSocket, data: dict):
"""评判一场指定的对话"""
loop = asyncio.get_event_loop()
try:
judge_model_name = data.get("judge_model", "qwen_instruct")
debate_id = data.get("debate_id")
save_enabled = bool(data.get("save_records", False))
if not debate_id:
await websocket.send_text(json.dumps({"type": "error", "message": "缺少对话ID无法评判。"}))
return
file_path = os.path.join(OUTPUT_DIR, "对话记录", f"{debate_id}.json")
session_to_judge = None
if os.path.exists(file_path):
session_to_judge = ConversationSession.load_from_file(file_path)
else:
# 新增:优先使用内存备份,避免必须写磁盘
session_to_judge = recent_sessions.get(debate_id)
if not session_to_judge:
await websocket.send_text(json.dumps({"type": "error", "message": f"找不到对话记录: {debate_id}(内存与磁盘均不存在)"}))
return # 修复:此 return 必须在 if 块内部
judge_model = model_manager.get_model(judge_model_name)
assistant_messages = [msg for msg in session_to_judge.messages if msg.role == 'assistant']
# 构造带轮次的实录
total_msgs = len(assistant_messages)
actual_rounds = math.ceil(total_msgs / 2) if total_msgs > 0 else 0
transcript_parts = []
total_rounds = session_to_judge.max_rounds
for r in range(actual_rounds):
transcript_parts.append(f"—— 第({r+1}/{total_rounds})轮 ——")
pro_idx = r * 2
con_idx = r * 2 + 1
if pro_idx < total_msgs:
pro_model = session_to_judge.pro_model
transcript_parts.append(f"正方 ({pro_model}): {assistant_messages[pro_idx].content}")
if con_idx < total_msgs:
con_model = session_to_judge.con_model
transcript_parts.append(f"反方 ({con_model}): {assistant_messages[con_idx].content}")
debate_transcript = "\n\n".join(transcript_parts)
if session_to_judge.mode == 'debate':
judge_prompt = (
f"你是一位专业的辩论评审。请基于以下对话实录,对双方的辩论表现进行专业评判。\n\n"
f"对话模式:辩论\n"
f"辩论话题:{session_to_judge.topic}\n"
f"正方(AI 1):{session_to_judge.pro_model}\n"
f"反方(AI 2):{session_to_judge.con_model}\n\n"
f"实际轮次:{actual_rounds}(禁止杜撰额外轮次)\n\n"
f"对话实录:\n{debate_transcript}\n\n"
f"请严格按照以下步骤进行分析并输出:\n"
f"1. **结论先行(1-2句)**:直接指出哪一方更胜一筹,并给出最关键的1-2条理由。\n"
f"2. **维度对比表(Markdown 表格)**:从至少六个维度对双方评分/评述:立场清晰度、论据扎实度、反驳力度、逻辑结构、证据引用/事实性、聚焦度(针对性)。最后一列写明该维度的优势方。\n"
f"3. **证据引用**:逐点引用原文并标注\"第X轮-正/反\"来支撑判定,禁止引用不存在的轮次。\n"
f"4. **改进建议**:分别给正反双方各2-3条可执行的改进建议。"
)
else:
judge_prompt = (
f"你是一位专业的协作评审。请基于以下对话实录,评估两位 AI 的协作质量与产出。\n\n"
f"对话模式:协作讨论\n"
f"协作任务:{session_to_judge.topic}\n"
f"AI 1:{session_to_judge.pro_model}\n"
f"AI 2:{session_to_judge.con_model}\n\n"
f"实际轮次:{actual_rounds}(禁止杜撰额外轮次)\n\n"
f"对话实录:\n{debate_transcript}\n\n"
f"请严格按照以下步骤进行分析并输出:\n"
f"1. **总体评估(1-2句)**:先给出任务完成度与协作有效性的总体判断。\n"
f"2. **协作维度表(Markdown 表格)**:从至少六个维度评述:目标对齐、信息共享/互补、方案可行性、风险识别、推进计划(时间/里程碑)、个人贡献度。最后一列说明哪一方贡献更关键。\n"
f"3. **行动计划**:给出一份精炼的下一步行动清单(里程碑+负责人+时间节点)。引用原文时请标注\"第X轮-参与者\"。\n"
f"4. **改进建议**:指出影响协作效率的关键瓶颈,并给出2-3条可落地的改进建议。"
)
# 刷新评判流ID
judge_stream_id = str(uuid.uuid4())
manager.set_judge_id(websocket, judge_stream_id)
await websocket.send_text(json.dumps({"type": "judge_started", "model": judge_model_name}))
response_content = ""
def stream_callback(content):
nonlocal response_content
# 丢弃旧流输出
if manager.get_current_judge_id(websocket) != judge_stream_id:
return
response_content += content
asyncio.run_coroutine_threadsafe(
websocket.send_text(json.dumps({"type": "judge_stream_content", "content": content})), loop
)
await loop.run_in_executor(None, judge_model.chat_stream, [{"role": "user", "content": judge_prompt}], stream_callback)
await websocket.send_text(json.dumps({"type": "judge_stream_end", "model": judge_model_name}))
logger.info(f"模型 {judge_model_name} 已完成评判。")
# 可选:保存评判结果
if save_enabled:
try:
judge_dir = os.path.join(OUTPUT_DIR, "评判记录")
os.makedirs(judge_dir, exist_ok=True)
judge_file = os.path.join(judge_dir, f"{debate_id}_judge_{judge_model_name}.md")
with open(judge_file, "w", encoding="utf-8") as jf:
jf.write(f"# 评判结果\n\n对话ID: {debate_id}\n\n评判模型: {judge_model_name}\n\n---\n\n")
jf.write(response_content)
logger.info(f"评判结果已保存: {judge_file}")
except Exception as e:
logger.error(f"保存评判结果失败: {str(e)}")
# 新增:写入内存缓存,便于导出
recent_judges[debate_id] = response_content
except Exception as e:
logger.error(f"评判过程中出错: {str(e)}", exc_info=True)
await websocket.send_text(json.dumps({"type": "error", "message": f"评判过程中出错: {str(e)}"}))
async def summarize_collaboration(websocket: WebSocket, data: dict):
"""总结协作任务的对话内容"""
loop = asyncio.get_event_loop()
try:
summary_model_name = data.get("summary_model", "qwen_instruct")
debate_id = data.get("debate_id")
save_enabled = bool(data.get("save_records", False))
if not debate_id:
await websocket.send_text(json.dumps({"type": "error", "message": "缺少对话ID无法总结。"}))
return
file_path = os.path.join(OUTPUT_DIR, "对话记录", f"{debate_id}.json")
session_to_summarize = None
if os.path.exists(file_path):
session_to_summarize = ConversationSession.load_from_file(file_path)
else:
# 优先使用内存备份,避免必须写磁盘
session_to_summarize = recent_sessions.get(debate_id)
if not session_to_summarize:
await websocket.send_text(json.dumps({"type": "error", "message": f"找不到对话记录: {debate_id}(内存与磁盘均不存在)"}))
return
summary_model = model_manager.get_model(summary_model_name)
assistant_messages = [msg for msg in session_to_summarize.messages if msg.role == 'assistant']
# 构造带轮次的实录
total_msgs = len(assistant_messages)
actual_rounds = math.ceil(total_msgs / 2) if total_msgs > 0 else 0
transcript_parts = []
total_rounds = session_to_summarize.max_rounds
for r in range(actual_rounds):
transcript_parts.append(f"—— 第({r+1}/{total_rounds})轮 ——")
pro_idx = r * 2
con_idx = r * 2 + 1
if pro_idx < total_msgs:
pro_model = session_to_summarize.pro_model
transcript_parts.append(f"AI 1 ({pro_model}): {assistant_messages[pro_idx].content}")
if con_idx < total_msgs:
con_model = session_to_summarize.con_model
transcript_parts.append(f"AI 2 ({con_model}): {assistant_messages[con_idx].content}")
collaboration_transcript = "\n\n".join(transcript_parts)
summary_prompt = (
f"你是一位专业的会议记录员和内容总结专家。请基于以下协作对话实录,对两位AI的讨论内容进行全面总结。\n\n"
f"对话模式:协作讨论\n"
f"协作任务:{session_to_summarize.topic}\n"
f"AI 1:{session_to_summarize.pro_model}\n"
f"AI 2:{session_to_summarize.con_model}\n\n"
f"实际轮次:{actual_rounds}(禁止杜撰额外轮次)\n\n"
f"对话实录:\n{collaboration_transcript}\n\n"
f"请严格按照以下步骤进行分析并输出:\n"
f"1. **任务概述**:简要描述协作任务的目标和背景。\n"
f"2. **主要观点**:总结两位AI在讨论中提出的主要观点和想法,按主题分类。\n"
f"3. **达成共识**:列出两位AI在讨论中达成的一致意见和共识。\n"
f"4. **分歧点**:指出两位AI在讨论中存在的不同意见或分歧。\n"
f"5. **最终结论**:总结协作讨论的最终结论或成果。\n"
f"6. **后续建议**:提出基于当前讨论的后续行动建议或需要进一步探讨的问题。"
)
# 刷新总结流ID
summary_stream_id = str(uuid.uuid4())
manager.set_judge_id(websocket, summary_stream_id)
await websocket.send_text(json.dumps({"type": "summary_started", "model": summary_model_name}))
response_content = ""
def stream_callback(content):
nonlocal response_content
# 丢弃旧流输出
if manager.get_current_judge_id(websocket) != summary_stream_id:
return
response_content += content
asyncio.run_coroutine_threadsafe(
websocket.send_text(json.dumps({"type": "summary_stream_content", "content": content})), loop
)
await loop.run_in_executor(None, summary_model.chat_stream, [{"role": "user", "content": summary_prompt}], stream_callback)
await websocket.send_text(json.dumps({"type": "summary_stream_end", "model": summary_model_name}))
logger.info(f"模型 {summary_model_name} 已完成协作总结。")
# 可选:保存总结结果
if save_enabled:
try:
summary_dir = os.path.join(OUTPUT_DIR, "总结记录")
os.makedirs(summary_dir, exist_ok=True)
summary_file = os.path.join(summary_dir, f"{debate_id}_summary_{summary_model_name}.md")
with open(summary_file, "w", encoding="utf-8") as sf:
sf.write(f"# 协作总结\n\n对话ID: {debate_id}\n\n总结模型: {summary_model_name}\n\n---\n\n")
sf.write(response_content)
logger.info(f"协作总结已保存: {summary_file}")
except Exception as e:
logger.error(f"保存协作总结失败: {str(e)}")
# 写入内存缓存,便于导出
recent_judges[debate_id] = response_content
except Exception as e:
logger.error(f"总结过程中出错: {str(e)}", exc_info=True)
await websocket.send_text(json.dumps({"type": "error", "message": f"总结过程中出错: {str(e)}"}))
async def stop_conversation(websocket: WebSocket):
"""停止当前连接的对话"""
task = manager.get_task(websocket)
if task and not task.done():
task.cancel()
logger.info("发送取消请求到对话任务。")
else:
logger.warning("请求停止对话,但没有活动的任务。")
await websocket.send_text(json.dumps({"type": "info", "message": "没有正在进行的对话可供停止。"}))
def save_conversation_record(session: ConversationSession, save_enabled: bool):
"""保存指定的对话记录(按需)"""
if not save_enabled:
return
if session:
try:
output_dir = os.path.join(OUTPUT_DIR, "对话记录")
os.makedirs(output_dir, exist_ok=True)
file_path = os.path.join(output_dir, f"{session.debate_id}.json")
session.save_to_file(file_path)
logger.info(f"对话记录已保存: {file_path}")
except Exception as e:
logger.error(f"保存对话记录时出错: {str(e)}")
def create_templates():
"""创建HTML模板文件"""
template_path = os.path.join(templates_dir, "index.html")
# 始终覆盖模板文件,确保其与代码同步
index_html = """
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>AI大模型对话系统</title>
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&family=Noto+Sans+SC:wght@400;500;700&display=swap" rel="stylesheet">
<link rel="stylesheet" href="{{ url_for('static', path='css/style.css') }}?v=20250908a">
<script src="https://cdn.jsdelivr.net/npm/marked/marked.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/dompurify/dist/purify.min.js"></script>
</head>
<body>
<div class="container">
<div class="header">
<div class="header-title">
<h1>AI大模型对话系统</h1>
<p>观看两个AI大模型实时对话</p>
</div>
<div class="header-controls">
<select id="exportFormat">
<option value="md" selected>Markdown (.md)</option>
<option value="json">JSON (.json)</option>
<option value="txt">文本 (.txt)</option>
</select>
<button id="exportAllBtn" disabled>导出记录</button>
</div>
</div>
<div class="main-layout">
<div class="sidebar">
<h3 class="panel-title">设置</h3>
<div class="control-group">
<label>对话模式</label>
<div class="radio-group">
<input type="radio" id="modeDebate" name="mode" value="debate" checked>
<label for="modeDebate">辩论</label>
<input type="radio" id="modeDiscussion" name="mode" value="discussion">
<label for="modeDiscussion">协作讨论</label>
</div>
</div>
<div class="control-group"><label for="topic">对话任务/话题</label><input type="text" id="topic" value="真与善谁更重要?"></div>
<div class="control-group">
<label for="initialPrompt">自定义初始提示 (可选)</label>
<textarea id="initialPrompt" rows="6" placeholder="默认提示示例:'你将作为正方,就[话题]进行辩论...'。你可以在此输入额外指示(默认追加),或选择覆盖默认提示。"></textarea>
</div>
<div class="control-group prompt-mode-group">
<label>提示词模式</label>
<div class="radio-group">
<input type="radio" id="promptAppend" name="promptMode" value="append" checked>
<label for="promptAppend">追加</label>
<input type="radio" id="promptOverride" name="promptMode" value="override">
<label for="promptOverride">覆盖</label>
</div>
</div>
<div class="control-group"><label for="rounds">轮数</label><input type="number" id="rounds" min="1" max="10" value="3"></div>
<div class="control-group">
<label for="proModel">AI 1 (正方)</label>
<select id="proModel">
<option value="deepseek_v31" selected>deepseek-ai/DeepSeek-V3.1</option>
<option value="qwen_instruct">Qwen/Qwen3-235B-Instruct</option>
<option value="qwen">Qwen/Qwen3-235B-Thinking</option>
<option value="glm45">ZhipuAI/GLM-4.5</option>
</select>
</div>
<div class="control-group">
<label for="conModel">AI 2 (反方)</label>
<select id="conModel">
<option value="deepseek_v31">deepseek-ai/DeepSeek-V3.1</option>
<option value="qwen_instruct" selected>Qwen/Qwen3-235B-Instruct</option>
<option value="qwen">Qwen/Qwen3-235B-Thinking</option>
<option value="glm45">ZhipuAI/GLM-4.5</option>
</select>
</div>
<div class="controls">
<button id="startBtn" disabled>开始对话</button>
<button id="stopBtn" disabled>停止对话</button>
</div>
</div>
<div class="chat-area">
<div class="conversation-wrapper">
<h3 class="panel-title">对话区</h3>
<div id="output" class="output-container"></div>
</div>
<div id="judge-section" class="judge-section">
<h3 class="panel-title" id="judgeSectionTitle">评判区</h3>
<div class="judge-controls">
<label for="judgeModel">选择总结模型</label>
<select id="judgeModel">
<option value="deepseek_v31">deepseek-ai/DeepSeek-V3.1</option>
<option value="qwen_instruct" selected>Qwen/Qwen3-235B-Instruct</option>
<option value="qwen">Qwen/Qwen3-235B-Thinking</option>
<option value="glm45">ZhipuAI/GLM-4.5</option>
</select>
<button id="judgeBtn" disabled>评判双方辩论表现</button>
<button id="summaryBtn" disabled style="display:none;">总结对话</button>
</div>
<div id="judge-output" class="output-container judge-output"></div>
</div>
</div>
</div>
</div>
<script src="{{ url_for('static', path='js/script.js') }}?v=20250908a"></script>
</body>
</html>"""
with open(template_path, "w", encoding="utf-8") as f:
f.write(index_html)
logger.info("Web应用模板文件 'index.html' 已被强制更新。")
def get_local_ip():
"""获取本机局域网IP地址"""
try:
with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as s:
# 连接到一个公共DNS服务器的IP(不会真的发送数据)
s.connect(("8.8.8.8", 80))
return s.getsockname()[0]
except Exception:
return "127.0.0.1" # 如果获取失败,返回本地回环地址
if __name__ == "__main__":
# 本地运行时,FastAPI的启动事件也会触发,所以模板创建是安全的
# 智能端口切换:优先使用环境变量PORT,否则默认为8000
port = int(os.environ.get("PORT", 8000))
local_ip = get_local_ip()
logger.info("="*50)
logger.info("AI大模型对话系统已启动")
logger.info(f" - 本机访问: http://localhost:{port}")
logger.info(f" - 局域网访问: http://{local_ip}:{port}")
logger.info("="*50)
uvicorn.run(app, host="0.0.0.0", port=port)
@app.get("/api/export")
async def export_records(debate_id: str = Query(...), format: str = Query("md")):
"""导出指定对话的记录(对话+最近一次评判),不落盘,直接下载。"""
fmt = (format or "md").lower()
session = recent_sessions.get(debate_id)
if not session:
# 兜底:尝试磁盘
file_path = os.path.join(OUTPUT_DIR, "对话记录", f"{debate_id}.json")
if os.path.exists(file_path):
session = ConversationSession.load_from_file(file_path)
if not session:
return HTMLResponse(content=f"<pre>找不到对话记录: {debate_id}</pre>", status_code=404)
judge_md = recent_judges.get(debate_id, "")
# 仅保留双方模型的回答(assistant),不导出提示词/用户消息
assistant_messages = [m for m in session.messages if m.role == 'assistant']
# 导出时间(优先用会话开始时间),统一转换为东八区,精确到分钟
base_dt = session.start_time or datetime.utcnow()
if base_dt.tzinfo is None:
beijing_dt = base_dt + timedelta(hours=8)
else:
beijing_dt = base_dt.astimezone(timezone(timedelta(hours=8)))
ts = beijing_dt.strftime('%Y-%m-%d %H:%M (UTC+8)')
filename_ts = beijing_dt.strftime('%Y%m%d_%H%M%S')
# 清理话题作文文件名安全的部分
topic = session.topic or "未命名对话" # 修复:为None或空话题提供默认值
sanitized_topic = re.sub(r'[\\/*?:"<>|]', "_", topic).replace(" ", "_")
sanitized_topic = (sanitized_topic[:50] + '...') if len(sanitized_topic) > 50 else sanitized_topic
if fmt == 'json':
payload = {
'debate_id': debate_id,
'topic': session.topic,
'export_time': ts,
'messages': [
{
'role': m.role,
'content': m.content,
'model': m.model_name,
'round': (idx // 2) + 1,
'round_total': session.max_rounds,
'round_label': f"{(idx // 2) + 1}/{session.max_rounds}"
} for idx, m in enumerate(assistant_messages)
],
'judge_markdown': judge_md
}
content = json.dumps(payload, ensure_ascii=False, indent=2)
filename = f"{filename_ts}_{sanitized_topic}.json"
media = "application/json; charset=utf-8"
elif fmt == 'txt':
parts = [f"对话ID: {debate_id}", f"话题: {session.topic}", f"导出时间: {ts}", "---"]
total_rounds = session.max_rounds
for i, m in enumerate(assistant_messages):
round_no = (i // 2) + 1
# 每轮开始插入分隔
if i % 2 == 0:
parts.append(f"—— 第({round_no}/{total_rounds})轮 ——")
# 推断角色与模型
is_pro = (i % 2 == 0)
model_name = session.pro_model if is_pro else session.con_model
role_cn = "正方" if is_pro else "反方"
parts.append(f"{role_cn} ({model_name}):\n{m.content}\n")
if judge_md:
parts.append("\n==== 评判结果 ====")
parts.append(md_to_text(judge_md))
content = "\n".join(parts)
filename = f"{filename_ts}_{sanitized_topic}.txt"
media = "text/plain; charset=utf-8"
else: # md
parts = ["# 对话记录", f"对话ID: {debate_id}", f"话题: {session.topic}", f"导出时间: {ts}", ""]
total_rounds = session.max_rounds
for i, m in enumerate(assistant_messages):
round_no = (i // 2) + 1
if i % 2 == 0:
parts.append(f"### 第({round_no}/{total_rounds})轮")
parts.append("")
is_pro = (i % 2 == 0)
model_name = session.pro_model if is_pro else session.con_model
role_cn = "正方" if is_pro else "反方"
parts.append(f"**{role_cn} ({model_name})**:")
parts.append("")
parts.append(m.content)
parts.append("")
if judge_md:
parts += ["---", "# 评判结果", "", judge_md]
content = "\n".join(parts)
filename = f"{filename_ts}_{sanitized_topic}.md"
media = "text/markdown; charset=utf-8"
encoded_filename = quote(filename)
headers = {"Content-Disposition": f"attachment; filename*=UTF-8''{encoded_filename}"}
return StreamingResponse(iter([content.encode('utf-8')]), media_type=media, headers=headers)
# 简单将Markdown转为纯文本,用于TXT导出
def md_to_text(md: str) -> str:
if not md:
return ""
text = md
# 代码块三反引号去除
text = re.sub(r"```[\s\S]*?```", lambda m: re.sub(r"^```.*\n|\n```$", "", m.group(0)), text)
# 行内代码
text = re.sub(r"`([^`]+)`", r"\1", text)
# 粗体/斜体
text = re.sub(r"\*\*([^*]+)\*\*", r"\1", text)
text = re.sub(r"__([^_]+)__", r"\1", text)
text = re.sub(r"\*([^*]+)\*", r"\1", text)
text = re.sub(r"_([^_]+)_", r"\1", text)
# 链接与图片
text = re.sub(r"!\[([^\]]*)\]\([^)]*\)", r"\1", text)
text = re.sub(r"\[([^\]]+)\]\([^)]*\)", r"\1", text)
# 标题、引用、水平线
text = re.sub(r"^>\s*", "", text, flags=re.MULTILINE)
text = re.sub(r"^#{1,6}\s*", "", text, flags=re.MULTILINE)
text = re.sub(r"^\s*-{3,}\s*$", "", text, flags=re.MULTILINE)
# 表格竖线与分隔行
text = re.sub(r"^\|?\s*-+\s*(\|\s*-+\s*)+\|?\s*$", "", text, flags=re.MULTILINE)
text = text.replace("|", " |")
return text |