import os from typing import TypedDict, Annotated from dotenv import load_dotenv from langgraph.graph.message import add_messages from langchain_core.messages import AnyMessage, HumanMessage, SystemMessage from langgraph.prebuilt import ToolNode from langgraph.graph import START, StateGraph from langgraph.prebuilt import tools_condition from langgraph.checkpoint.memory import MemorySaver from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace from langfuse.callback import CallbackHandler from retriever import guest_info_tool from tools import search_tool, weather_info_tool, hub_stats_tool import gradio as gr load_dotenv() # Initialize Langfuse langfuse_handler = CallbackHandler( secret_key=os.getenv("LANGFUSE_SECRET_KEY"), public_key=os.getenv("LANGFUSE_PUBLIC_KEY"), host=os.getenv("LANGFUSE_HOST"), ) # Generate the chat interface, including the tools llm = HuggingFaceEndpoint( repo_id="Qwen/Qwen2.5-Coder-32B-Instruct", huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN") ) chat = ChatHuggingFace(llm=llm, verbose=True) tools = [guest_info_tool, search_tool, weather_info_tool, hub_stats_tool] chat_with_tools = chat.bind_tools(tools) # Define the AgentState structure class AgentState(TypedDict): messages: Annotated[list[AnyMessage], add_messages] def assistant(state: AgentState): # Define the system prompt (this is not part of the conversation history) system_message = SystemMessage(content="""You are Alfred, a helpful and sophisticated assistant. Your capabilities: - Answer questions using your knowledge - Search the web for recent or factual information using the DuckDuckGoSearchResults tool - Retrieve information about guests using the guest_info_tool - Use weather_info_tool to give information about the weather Guidelines: - Be concise, polite and helpful - When you don't know something, use the appropriate tool rather than guessing - For guest information requests, always use the guest_info_tool first - For factual or current information, use the search tool - Present information in a clear, organized manner Always think carefully about which tool is most appropriate for the user's request. """) # Call the agent with the system prompt and conversation history (state messages) assistant_response = chat_with_tools.invoke([system_message] + state.get("messages")) # Return the updated conversation state including the new assistant response return {"messages": state.get("messages") + [assistant_response]} # Build the graph builder = StateGraph(AgentState) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") checkpointer = MemorySaver() alfred = builder.compile(checkpointer=checkpointer) config = {"configurable": {"thread_id": "1"}, "callbacks": [langfuse_handler]} # Gradio chat function def chat_fn(message, history): state = {"messages": [HumanMessage(content=message)]} result = alfred.invoke(state, config) return result["messages"][-1].content # Launch Gradio interface interface = gr.ChatInterface(fn=chat_fn,type="messages") interface.launch()