Spaces:
Running
Running
import os | |
import torch | |
import torch.nn as nn | |
import huggingface_hub | |
import modelscope | |
from torchvision.models import squeezenet1_1 | |
TMP_DIR = "./__pycache__/tmp" | |
EN_US = os.getenv("LANG") != "zh_CN.UTF-8" | |
ZH2EN = { | |
"上传钢琴录音": "Upload a piano recording", | |
"状态栏": "Status", | |
"音频文件名": "Audio filename", | |
"钢琴分类结果": "Piano classification result", | |
"建议录音时长保持在 3s 左右, 过长会影响识别效率": "It is recommended to keep the duration of recording around 3s, too long will affect the recognition efficiency.", | |
"引用": "Cite", | |
"珠江": "Pearl River", | |
"英昌": "YOUNG CHANG", | |
"施坦威剧场": "STEINWAY Theater", | |
"星海": "HSINGHAI", | |
"卡瓦依": "KAWAI", | |
"施坦威": "STEINWAY", | |
"卡瓦依三角": "KAWAI Grand", | |
"雅马哈": "YAMAHA", | |
} | |
MODEL_DIR = ( | |
huggingface_hub.snapshot_download( | |
"ccmusic-database/pianos", | |
cache_dir="./__pycache__", | |
) | |
if EN_US | |
else modelscope.snapshot_download( | |
"ccmusic-database/pianos", | |
cache_dir="./__pycache__", | |
) | |
) | |
def _L(zh_txt: str): | |
return ZH2EN[zh_txt] if EN_US else zh_txt | |
def Classifier(cls_num=8, output_size=512, linear_output=False): | |
q = (1.0 * output_size / cls_num) ** 0.25 | |
l1 = int(q * cls_num) | |
l2 = int(q * l1) | |
l3 = int(q * l2) | |
if linear_output: | |
return torch.nn.Sequential( | |
nn.Dropout(), | |
nn.Linear(output_size, l3), | |
nn.ReLU(inplace=True), | |
nn.Dropout(), | |
nn.Linear(l3, l2), | |
nn.ReLU(inplace=True), | |
nn.Dropout(), | |
nn.Linear(l2, l1), | |
nn.ReLU(inplace=True), | |
nn.Linear(l1, cls_num), | |
) | |
else: | |
return torch.nn.Sequential( | |
nn.Dropout(), | |
nn.Conv2d(output_size, l3, kernel_size=(1, 1), stride=(1, 1)), | |
nn.ReLU(inplace=True), | |
nn.AdaptiveAvgPool2d(output_size=(1, 1)), | |
nn.Flatten(), | |
nn.Linear(l3, l2), | |
nn.ReLU(inplace=True), | |
nn.Dropout(), | |
nn.Linear(l2, l1), | |
nn.ReLU(inplace=True), | |
nn.Linear(l1, cls_num), | |
) | |
def net(weights=MODEL_DIR + "/save.pt"): | |
model = squeezenet1_1(pretrained=False) | |
model.classifier = Classifier() | |
model.load_state_dict(torch.load(weights, map_location=torch.device("cpu"))) | |
model.eval() | |
return model | |