import os import torch import shutil import librosa import warnings import numpy as np import gradio as gr import librosa.display import matplotlib.pyplot as plt from collections import Counter from model import EvalNet from utils import ( get_modelist, find_files, embed_img, _L, SAMPLE_RATE, TEMP_DIR, TRANSLATE, CLASSES, EN_US, ) def circular_padding(spec: np.ndarray, end: int): size = len(spec) if end <= size: return spec num_padding = end - size num_repeat = num_padding // size + int(num_padding % size != 0) padding = np.tile(spec, num_repeat) return np.concatenate((spec, padding))[:end] def wav2mel(audio_path: str, width=3): y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) total_frames = len(y) if total_frames % (width * sr) != 0: count = total_frames // (width * sr) + 1 y = circular_padding(y, count * width * sr) mel_spec = librosa.feature.melspectrogram(y=y, sr=sr) log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max) dur = librosa.get_duration(y=y, sr=sr) total_frames = log_mel_spec.shape[1] step = int(width * total_frames / dur) count = int(total_frames / step) begin = int(0.5 * (total_frames - count * step)) end = begin + step * count for i in range(begin, end, step): librosa.display.specshow(log_mel_spec[:, i : i + step]) plt.axis("off") plt.savefig( f"{TEMP_DIR}/{i}.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() def wav2cqt(audio_path: str, width=3): y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) total_frames = len(y) if total_frames % (width * sr) != 0: count = total_frames // (width * sr) + 1 y = circular_padding(y, count * width * sr) cqt_spec = librosa.cqt(y=y, sr=sr) log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max) dur = librosa.get_duration(y=y, sr=sr) total_frames = log_cqt_spec.shape[1] step = int(width * total_frames / dur) count = int(total_frames / step) begin = int(0.5 * (total_frames - count * step)) end = begin + step * count for i in range(begin, end, step): librosa.display.specshow(log_cqt_spec[:, i : i + step]) plt.axis("off") plt.savefig( f"{TEMP_DIR}/{i}.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() def wav2chroma(audio_path: str, width=3): y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) total_frames = len(y) if total_frames % (width * sr) != 0: count = total_frames // (width * sr) + 1 y = circular_padding(y, count * width * sr) chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr) log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max) dur = librosa.get_duration(y=y, sr=sr) total_frames = log_chroma_spec.shape[1] step = int(width * total_frames / dur) count = int(total_frames / step) begin = int(0.5 * (total_frames - count * step)) end = begin + step * count for i in range(begin, end, step): librosa.display.specshow(log_chroma_spec[:, i : i + step]) plt.axis("off") plt.savefig( f"{TEMP_DIR}/{i}.jpg", bbox_inches="tight", pad_inches=0.0, ) plt.close() def most_frequent_value(lst: list): counter = Counter(lst) max_count = max(counter.values()) for element, count in counter.items(): if count == max_count: return element return None def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR): status = "Success" filename = result = None try: if os.path.exists(folder_path): shutil.rmtree(folder_path) if not wav_path: raise ValueError("请输入音频!") spec = log_name.split("_")[-3] os.makedirs(folder_path, exist_ok=True) model = EvalNet(log_name, len(TRANSLATE)).model eval("wav2%s" % spec)(wav_path) jpgs = find_files(folder_path, ".jpg") preds = [] for jpg in jpgs: input = embed_img(jpg) output: torch.Tensor = model(input) preds.append(torch.max(output.data, 1)[1]) pred_id = most_frequent_value(preds) filename = os.path.basename(wav_path) result = ( CLASSES[pred_id].capitalize() if EN_US else f"{TRANSLATE[CLASSES[pred_id]]} ({CLASSES[pred_id].capitalize()})" ) except Exception as e: status = f"{e}" return status, filename, result if __name__ == "__main__": warnings.filterwarnings("ignore") models = get_modelist(assign_model="vit_l_16_mel") examples = [] example_wavs = find_files() for wav in example_wavs: examples.append([wav, models[0]]) with gr.Blocks() as demo: gr.Interface( fn=infer, inputs=[ gr.Audio(label=_L("上传录音"), type="filepath"), gr.Dropdown(choices=models, label=_L("选择模型"), value=models[0]), ], outputs=[ gr.Textbox(label=_L("状态栏"), show_copy_button=True), gr.Textbox(label=_L("音频文件名"), show_copy_button=True), gr.Textbox( label=_L("古筝演奏技法识别"), show_copy_button=True, ), ], examples=examples, cache_examples=False, flagging_mode="never", title=_L("建议录音时长保持在 3s 左右"), ) gr.Markdown( f"# {_L('引用')}" + """ ```bibtex @article{Zhou-2025, author = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han}, title = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research}, journal = {Transactions of the International Society for Music Information Retrieval}, volume = {8}, number = {1}, pages = {22--38}, month = {Mar}, year = {2025}, url = {https://doi.org/10.5334/tismir.194}, doi = {10.5334/tismir.194} } ```""" ) demo.launch()