Spaces:
Running
Running
admin
commited on
Commit
·
31d6574
1
Parent(s):
9c02599
2 pure en
Browse files- app.py +9 -10
- requirements.txt +3 -3
- utils.py +4 -10
app.py
CHANGED
|
@@ -8,9 +8,9 @@ import numpy as np
|
|
| 8 |
import gradio as gr
|
| 9 |
import librosa.display
|
| 10 |
import matplotlib.pyplot as plt
|
| 11 |
-
from utils import get_modelist, find_files, embed_img, TEMP_DIR
|
| 12 |
from collections import Counter
|
| 13 |
from model import EvalNet
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
TRANSLATE = {
|
|
@@ -235,6 +235,7 @@ TRANSLATE = {
|
|
| 235 |
"T0323": ["都它尔", "du1_ta1_er3"],
|
| 236 |
}
|
| 237 |
CLASSES = list(TRANSLATE.keys())
|
|
|
|
| 238 |
SAMPLE_RATE = 44100
|
| 239 |
|
| 240 |
|
|
@@ -363,7 +364,7 @@ def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
|
|
| 363 |
shutil.rmtree(folder_path)
|
| 364 |
|
| 365 |
if not wav_path:
|
| 366 |
-
return None, "
|
| 367 |
|
| 368 |
try:
|
| 369 |
model = EvalNet(log_name, len(TRANSLATE)).model
|
|
@@ -399,27 +400,25 @@ if __name__ == "__main__":
|
|
| 399 |
gr.Interface(
|
| 400 |
fn=infer,
|
| 401 |
inputs=[
|
| 402 |
-
gr.Audio(label="
|
| 403 |
-
gr.Dropdown(
|
| 404 |
-
choices=models, label="选择模型 Select a model", value=models[0]
|
| 405 |
-
),
|
| 406 |
],
|
| 407 |
outputs=[
|
| 408 |
-
gr.Textbox(label="
|
| 409 |
gr.Textbox(
|
| 410 |
-
label="
|
| 411 |
show_copy_button=True,
|
| 412 |
),
|
| 413 |
],
|
| 414 |
examples=examples,
|
| 415 |
cache_examples=False,
|
| 416 |
flagging_mode="never",
|
| 417 |
-
title="
|
| 418 |
)
|
| 419 |
|
| 420 |
gr.Markdown(
|
| 421 |
"""
|
| 422 |
-
#
|
| 423 |
```bibtex
|
| 424 |
@dataset{zhaorui_liu_2021_5676893,
|
| 425 |
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
|
|
|
|
| 8 |
import gradio as gr
|
| 9 |
import librosa.display
|
| 10 |
import matplotlib.pyplot as plt
|
|
|
|
| 11 |
from collections import Counter
|
| 12 |
from model import EvalNet
|
| 13 |
+
from utils import get_modelist, find_files, embed_img
|
| 14 |
|
| 15 |
|
| 16 |
TRANSLATE = {
|
|
|
|
| 235 |
"T0323": ["都它尔", "du1_ta1_er3"],
|
| 236 |
}
|
| 237 |
CLASSES = list(TRANSLATE.keys())
|
| 238 |
+
TEMP_DIR = "./__pycache__/tmp"
|
| 239 |
SAMPLE_RATE = 44100
|
| 240 |
|
| 241 |
|
|
|
|
| 364 |
shutil.rmtree(folder_path)
|
| 365 |
|
| 366 |
if not wav_path:
|
| 367 |
+
return None, "Please input an audio!"
|
| 368 |
|
| 369 |
try:
|
| 370 |
model = EvalNet(log_name, len(TRANSLATE)).model
|
|
|
|
| 400 |
gr.Interface(
|
| 401 |
fn=infer,
|
| 402 |
inputs=[
|
| 403 |
+
gr.Audio(label="Upload a recording", type="filepath"),
|
| 404 |
+
gr.Dropdown(choices=models, label="Select a model", value=models[0]),
|
|
|
|
|
|
|
| 405 |
],
|
| 406 |
outputs=[
|
| 407 |
+
gr.Textbox(label="Audio filename", show_copy_button=True),
|
| 408 |
gr.Textbox(
|
| 409 |
+
label="Chinese instrument recognition",
|
| 410 |
show_copy_button=True,
|
| 411 |
),
|
| 412 |
],
|
| 413 |
examples=examples,
|
| 414 |
cache_examples=False,
|
| 415 |
flagging_mode="never",
|
| 416 |
+
title="It is recommended to keep the recording length around 3s.",
|
| 417 |
)
|
| 418 |
|
| 419 |
gr.Markdown(
|
| 420 |
"""
|
| 421 |
+
# Cite
|
| 422 |
```bibtex
|
| 423 |
@dataset{zhaorui_liu_2021_5676893,
|
| 424 |
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
|
requirements.txt
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
-
librosa
|
| 2 |
torch
|
|
|
|
|
|
|
| 3 |
matplotlib
|
| 4 |
torchvision
|
| 5 |
-
|
| 6 |
-
modelscope==1.15
|
|
|
|
|
|
|
| 1 |
torch
|
| 2 |
+
pillow
|
| 3 |
+
librosa
|
| 4 |
matplotlib
|
| 5 |
torchvision
|
| 6 |
+
modelscope[framework]==1.18
|
|
|
utils.py
CHANGED
|
@@ -5,10 +5,9 @@ from modelscope import snapshot_download
|
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
MODEL_DIR = snapshot_download(
|
| 8 |
-
|
| 9 |
-
cache_dir=
|
| 10 |
)
|
| 11 |
-
TEMP_DIR = f"{os.getcwd()}/flagged"
|
| 12 |
|
| 13 |
|
| 14 |
def toCUDA(x):
|
|
@@ -34,22 +33,17 @@ def get_modelist(model_dir=MODEL_DIR):
|
|
| 34 |
try:
|
| 35 |
entries = os.listdir(model_dir)
|
| 36 |
except OSError as e:
|
| 37 |
-
print(f"
|
| 38 |
return
|
| 39 |
|
| 40 |
-
# 遍历所有条目
|
| 41 |
output = []
|
| 42 |
for entry in entries:
|
| 43 |
-
# 获取完整路径
|
| 44 |
full_path = os.path.join(model_dir, entry)
|
| 45 |
-
# 跳过'.git'文件夹
|
| 46 |
if entry == ".git" or entry == "examples":
|
| 47 |
-
print(f"
|
| 48 |
continue
|
| 49 |
|
| 50 |
-
# 检查条目是文件还是目录
|
| 51 |
if os.path.isdir(full_path):
|
| 52 |
-
# 打印目录路径
|
| 53 |
output.append(os.path.basename(full_path))
|
| 54 |
|
| 55 |
return output
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
MODEL_DIR = snapshot_download(
|
| 8 |
+
"ccmusic-database/CTIS",
|
| 9 |
+
cache_dir="./__pycache__",
|
| 10 |
)
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
def toCUDA(x):
|
|
|
|
| 33 |
try:
|
| 34 |
entries = os.listdir(model_dir)
|
| 35 |
except OSError as e:
|
| 36 |
+
print(f"Cannot access {model_dir}: {e}")
|
| 37 |
return
|
| 38 |
|
|
|
|
| 39 |
output = []
|
| 40 |
for entry in entries:
|
|
|
|
| 41 |
full_path = os.path.join(model_dir, entry)
|
|
|
|
| 42 |
if entry == ".git" or entry == "examples":
|
| 43 |
+
print(f"Skip .git or examples dir: {full_path}")
|
| 44 |
continue
|
| 45 |
|
|
|
|
| 46 |
if os.path.isdir(full_path):
|
|
|
|
| 47 |
output.append(os.path.basename(full_path))
|
| 48 |
|
| 49 |
return output
|