File size: 5,180 Bytes
8ccf632
 
e9c796e
8ccf632
 
81b26b5
06f0278
 
8ccf632
 
4ea3b6f
8ccf632
 
06f0278
8ccf632
e9c796e
e02a8c2
 
 
5a3d18f
 
 
e02a8c2
 
 
 
 
 
 
 
 
 
 
e9c796e
 
 
3b609a0
e9c796e
 
 
 
e02a8c2
da11108
 
5a3d18f
 
e9c796e
 
da11108
 
 
 
 
 
e9c796e
 
e02a8c2
e9c796e
8ccf632
e02a8c2
e9c796e
 
 
 
 
 
 
 
 
d2d62f5
e02a8c2
d2d62f5
 
8ccf632
06f0278
 
 
8ccf632
 
e9c796e
8ccf632
 
e2944a6
8ccf632
 
 
 
 
e9c796e
6ebb7df
4ea3b6f
8ccf632
e9c796e
8ccf632
 
 
 
 
 
e9c796e
8ccf632
 
e9c796e
8ccf632
 
 
 
 
 
 
 
 
e9c796e
8ccf632
 
 
 
 
 
 
 
e9c796e
8ccf632
 
 
 
 
 
 
e9c796e
8ccf632
 
 
 
 
 
 
 
e9c796e
8ccf632
e9c796e
d2d62f5
e9c796e
e02a8c2
8ccf632
 
e9c796e
e02a8c2
 
 
 
e9c796e
e02a8c2
 
8ccf632
 
e9c796e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import DiffusionPipeline

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048


def get_seed(randomize_seed: bool, seed: int) -> int:
    """Determine and return the random seed to use for model generation.

    - MAX_SEED is the maximum value for a 32-bit integer (np.iinfo(np.int32).max).
    - This function is typically used to ensure reproducibility or to introduce randomness in model generation.

    Args:
        randomize_seed (bool): If True, a random seed (an integer in [0, MAX_SEED)) is generated using NumPy's default random number generator. If False, the provided seed argument is returned as-is.
        seed (int): The seed value to use if randomize_seed is False.

    Returns:
        int: The selected seed value. If randomize_seed is True, a randomly generated integer; otherwise, the value of the seed argument.
    """
    rng = np.random.default_rng()
    return int(rng.integers(0, MAX_SEED)) if randomize_seed else seed


@spaces.GPU
def infer(
    prompt: str,
    seed: int,
    width: int = 1024,
    height: int = 1024,
    num_inference_steps: int = 4,
    progress: gr.Progress = gr.Progress(track_tqdm=True),  # noqa: ARG001, B008
) -> PIL.Image.Image:
    """Generate an image from a text prompt using the FLUX.1 [schnell] model.

    - Prompts must be in English. Other languages are not currently supported.
    - Prompts are limited to a maximum of 77 tokens, due to the CLIP tokenizer constraint.

    Args:
        prompt: A text prompt in English used to guide the image generation. Limited to 77 tokens.
        seed: The seed used for deterministic random number generation.
        width: Width of the generated image in pixels. Defaults to 1024.
        height: Height of the generated image in pixels. Defaults to 1024.
        num_inference_steps: Number of inference steps to perform. A higher value may improve image quality. Defaults to 4.
        progress: (Internal) Used to display progress in the UI; should not be modified by the user.

    Returns:
        A PIL.Image.Image object representing the generated image.
    """
    generator = torch.Generator().manual_seed(seed)
    return pipe(
        prompt=prompt,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        generator=generator,
        guidance_scale=0.0,
    ).images[0]


def run_example(prompt: str) -> tuple[PIL.Image.Image, int]:
    return infer(prompt, seed=42)


examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
        """)

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                submit_btn=True,
            )
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )

        gr.Examples(
            examples=examples,
            fn=run_example,
            inputs=prompt,
            outputs=result,
        )

    prompt.submit(
        fn=get_seed,
        inputs=[randomize_seed, seed],
        outputs=seed,
    ).then(
        fn=infer,
        inputs=[prompt, seed, width, height, num_inference_steps],
        outputs=result,
    )


if __name__ == "__main__":
    demo.launch(mcp_server=True)