Spaces:
Sleeping
Sleeping
Upload retrieval.py
Browse files- retrieval.py +2 -2
retrieval.py
CHANGED
@@ -9,14 +9,14 @@ retrieved_docs = None
|
|
9 |
|
10 |
# Retrieval Function
|
11 |
def retrieve_documents(query, top_k=5):
|
12 |
-
faiss_index_path = f"rag7_index.faiss"
|
13 |
index = faiss.read_index(faiss_index_path)
|
14 |
|
15 |
query_embedding = np.array(embedding_model.embed_documents([query]), dtype=np.float32)
|
16 |
|
17 |
_, nearest_indices = index.search(query_embedding, top_k)
|
18 |
|
19 |
-
with open(f"rag7_docs.json", "r") as f:
|
20 |
documents = json.load(f) # Contains all documents for this dataset
|
21 |
|
22 |
retrieved_docs = [Document(page_content=documents[i]) for i in nearest_indices[0]]
|
|
|
9 |
|
10 |
# Retrieval Function
|
11 |
def retrieve_documents(query, top_k=5):
|
12 |
+
faiss_index_path = f"data_local/rag7_index.faiss"
|
13 |
index = faiss.read_index(faiss_index_path)
|
14 |
|
15 |
query_embedding = np.array(embedding_model.embed_documents([query]), dtype=np.float32)
|
16 |
|
17 |
_, nearest_indices = index.search(query_embedding, top_k)
|
18 |
|
19 |
+
with open(f"data_local/rag7_docs.json", "r") as f:
|
20 |
documents = json.load(f) # Contains all documents for this dataset
|
21 |
|
22 |
retrieved_docs = [Document(page_content=documents[i]) for i in nearest_indices[0]]
|