Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- evaluation.py +1 -1
- retrieval.py +2 -1
evaluation.py
CHANGED
@@ -4,7 +4,6 @@ from sklearn.metrics import mean_squared_error, roc_auc_score
|
|
4 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
|
7 |
-
from retrieval import query_dataset
|
8 |
from data_processing import load_query_dataset
|
9 |
|
10 |
global ground_truth_answer, ground_truth_metrics
|
@@ -93,6 +92,7 @@ def compute_rmse(predicted_values, ground_truth_values):
|
|
93 |
return np.sqrt(mean_squared_error(ground_truth_values, predicted_values))
|
94 |
|
95 |
def calculate_metrics(question, response, docs, time_taken):
|
|
|
96 |
data = load_query_dataset(query_dataset)
|
97 |
ground_truth_answer = retrieve_ground_truths(question, data) # Store the ground truth answer
|
98 |
|
|
|
4 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
|
|
|
7 |
from data_processing import load_query_dataset
|
8 |
|
9 |
global ground_truth_answer, ground_truth_metrics
|
|
|
92 |
return np.sqrt(mean_squared_error(ground_truth_values, predicted_values))
|
93 |
|
94 |
def calculate_metrics(question, response, docs, time_taken):
|
95 |
+
from retrieval import query_dataset
|
96 |
data = load_query_dataset(query_dataset)
|
97 |
ground_truth_answer = retrieve_ground_truths(question, data) # Store the ground truth answer
|
98 |
|
retrieval.py
CHANGED
@@ -9,9 +9,10 @@ from sentence_transformers import CrossEncoder
|
|
9 |
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
|
10 |
|
11 |
retrieved_docs = None
|
|
|
12 |
|
13 |
def retrieve_documents_hybrid(query, top_k=5):
|
14 |
-
global query_dataset
|
15 |
query_dataset = find_query_dataset(query)
|
16 |
|
17 |
with open( f"data_local/{query_dataset}_chunked_docs.json", "r") as f:
|
|
|
9 |
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
|
10 |
|
11 |
retrieved_docs = None
|
12 |
+
global query_dataset
|
13 |
|
14 |
def retrieve_documents_hybrid(query, top_k=5):
|
15 |
+
#global query_dataset
|
16 |
query_dataset = find_query_dataset(query)
|
17 |
|
18 |
with open( f"data_local/{query_dataset}_chunked_docs.json", "r") as f:
|