Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch CLIP model.""" | |
| from dataclasses import dataclass | |
| from typing import Any, Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
| from transformers.activations import ACT2FN | |
| from transformers.modeling_attn_mask_utils import ( | |
| _create_4d_causal_attention_mask, | |
| _prepare_4d_attention_mask, | |
| ) | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutput, | |
| BaseModelOutputWithPooling, | |
| ImageClassifierOutput, | |
| ) | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.utils import ( | |
| ModelOutput, | |
| add_code_sample_docstrings, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| logging, | |
| replace_return_docstrings, | |
| ) | |
| from transformers.models.clip.configuration_clip import ( | |
| CLIPConfig, | |
| CLIPTextConfig, | |
| CLIPVisionConfig, | |
| ) | |
| logger = logging.get_logger(__name__) | |
| # General docstring | |
| _CONFIG_FOR_DOC = "CLIPConfig" | |
| _CHECKPOINT_FOR_DOC = "openai/clip-vit-base-patch32" | |
| # Image classification docstring | |
| _IMAGE_CLASS_CHECKPOINT = "openai/clip-vit-base-patch32" | |
| _IMAGE_CLASS_EXPECTED_OUTPUT = "LABEL_0" | |
| # contrastive loss function, adapted from | |
| # https://sachinruk.github.io/blog/2021-03-07-clip.html | |
| def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: | |
| return nn.functional.cross_entropy( | |
| logits, torch.arange(len(logits), device=logits.device) | |
| ) | |
| def clip_loss(similarity: torch.Tensor) -> torch.Tensor: | |
| caption_loss = contrastive_loss(similarity) | |
| image_loss = contrastive_loss(similarity.t()) | |
| return (caption_loss + image_loss) / 2.0 | |
| class CLIPVisionModelOutput(ModelOutput): | |
| """ | |
| Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states. | |
| Args: | |
| image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): | |
| The image embeddings obtained by applying the projection layer to the pooler_output. | |
| last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| Sequence of hidden-states at the output of the last layer of the model. | |
| hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
| Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
| one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
| Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
| attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
| Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
| sequence_length)`. | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
| heads. | |
| """ | |
| image_embeds: Optional[torch.FloatTensor] = None | |
| last_hidden_state: torch.FloatTensor = None | |
| hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
| attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
| class CLIPTextModelOutput(ModelOutput): | |
| """ | |
| Base class for text model's outputs that also contains a pooling of the last hidden states. | |
| Args: | |
| text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): | |
| The text embeddings obtained by applying the projection layer to the pooler_output. | |
| last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| Sequence of hidden-states at the output of the last layer of the model. | |
| hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
| Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
| one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
| Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
| attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
| Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
| sequence_length)`. | |
| Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
| heads. | |
| """ | |
| text_embeds: Optional[torch.FloatTensor] = None | |
| last_hidden_state: torch.FloatTensor = None | |
| hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
| attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
| class CLIPOutput(ModelOutput): | |
| """ | |
| Args: | |
| loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): | |
| Contrastive loss for image-text similarity. | |
| logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): | |
| The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text | |
| similarity scores. | |
| logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): | |
| The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image | |
| similarity scores. | |
| text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
| The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`]. | |
| image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): | |
| The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`]. | |
| text_model_output(`BaseModelOutputWithPooling`): | |
| The output of the [`CLIPTextModel`]. | |
| vision_model_output(`BaseModelOutputWithPooling`): | |
| The output of the [`CLIPVisionModel`]. | |
| """ | |
| loss: Optional[torch.FloatTensor] = None | |
| logits_per_image: torch.FloatTensor = None | |
| logits_per_text: torch.FloatTensor = None | |
| text_embeds: torch.FloatTensor = None | |
| image_embeds: torch.FloatTensor = None | |
| text_model_output: BaseModelOutputWithPooling = None | |
| vision_model_output: BaseModelOutputWithPooling = None | |
| def to_tuple(self) -> Tuple[Any]: | |
| return tuple( | |
| ( | |
| self[k] | |
| if k not in ["text_model_output", "vision_model_output"] | |
| else getattr(self, k).to_tuple() | |
| ) | |
| for k in self.keys() | |
| ) | |
| class CLIPVisionEmbeddings(nn.Module): | |
| def __init__(self, config: CLIPVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| self.embed_dim = config.hidden_size | |
| self.image_size = config.image_size | |
| self.patch_size = config.patch_size | |
| self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) | |
| self.patch_embedding = nn.Conv2d( | |
| in_channels=config.num_channels, | |
| out_channels=self.embed_dim, | |
| kernel_size=self.patch_size, | |
| stride=self.patch_size, | |
| bias=False, | |
| ) | |
| self.num_patches = (self.image_size // self.patch_size) ** 2 | |
| self.num_positions = self.num_patches + 1 | |
| self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) | |
| self.register_buffer( | |
| "position_ids", | |
| torch.arange(self.num_positions).expand((1, -1)), | |
| persistent=False, | |
| ) | |
| def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: | |
| batch_size = pixel_values.shape[0] | |
| target_dtype = self.patch_embedding.weight.dtype | |
| patch_embeds = self.patch_embedding( | |
| pixel_values.to(dtype=target_dtype) | |
| ) # shape = [*, width, grid, grid] | |
| patch_embeds = patch_embeds.flatten(2).transpose(1, 2) | |
| class_embeds = self.class_embedding.expand(batch_size, 1, -1) | |
| embeddings = torch.cat([class_embeds, patch_embeds], dim=1) | |
| embeddings = embeddings + self.position_embedding(self.position_ids) | |
| return embeddings | |
| class CLIPTextEmbeddings(nn.Module): | |
| def __init__(self, config: CLIPTextConfig): | |
| super().__init__() | |
| embed_dim = config.hidden_size | |
| self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) | |
| self.position_embedding = nn.Embedding( | |
| config.max_position_embeddings, embed_dim | |
| ) | |
| # position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
| self.register_buffer( | |
| "position_ids", | |
| torch.arange(config.max_position_embeddings).expand((1, -1)), | |
| persistent=False, | |
| ) | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| ) -> torch.Tensor: | |
| seq_length = ( | |
| input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] | |
| ) | |
| if position_ids is None: | |
| position_ids = self.position_ids[:, :seq_length] | |
| if inputs_embeds is None: | |
| inputs_embeds = self.token_embedding(input_ids) | |
| position_embeddings = self.position_embedding(position_ids) | |
| embeddings = inputs_embeds + position_embeddings | |
| return embeddings | |
| class CLIPAttention(nn.Module): | |
| """Multi-headed attention from 'Attention Is All You Need' paper""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.embed_dim = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.embed_dim // self.num_heads | |
| if self.head_dim * self.num_heads != self.embed_dim: | |
| raise ValueError( | |
| f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
| f" {self.num_heads})." | |
| ) | |
| self.scale = self.head_dim**-0.5 | |
| self.dropout = config.attention_dropout | |
| self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
| def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
| return ( | |
| tensor.view(bsz, seq_len, self.num_heads, self.head_dim) | |
| .transpose(1, 2) | |
| .contiguous() | |
| ) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| causal_attention_mask: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| """Input shape: Batch x Time x Channel""" | |
| bsz, tgt_len, embed_dim = hidden_states.size() | |
| # get query proj | |
| query_states = self.q_proj(hidden_states) * self.scale | |
| key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
| value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
| proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
| query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
| key_states = key_states.view(*proj_shape) | |
| value_states = value_states.view(*proj_shape) | |
| src_len = key_states.size(1) | |
| attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
| if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
| f" {attn_weights.size()}" | |
| ) | |
| # apply the causal_attention_mask first | |
| if causal_attention_mask is not None: | |
| if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" | |
| f" {causal_attention_mask.size()}" | |
| ) | |
| attn_weights = ( | |
| attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| + causal_attention_mask | |
| ) | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| if attention_mask is not None: | |
| if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
| raise ValueError( | |
| f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
| ) | |
| attn_weights = ( | |
| attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
| + attention_mask | |
| ) | |
| attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
| if output_attentions: | |
| # this operation is a bit akward, but it's required to | |
| # make sure that attn_weights keeps its gradient. | |
| # In order to do so, attn_weights have to reshaped | |
| # twice and have to be reused in the following | |
| attn_weights_reshaped = attn_weights.view( | |
| bsz, self.num_heads, tgt_len, src_len | |
| ) | |
| attn_weights = attn_weights_reshaped.view( | |
| bsz * self.num_heads, tgt_len, src_len | |
| ) | |
| else: | |
| attn_weights_reshaped = None | |
| attn_probs = nn.functional.dropout( | |
| attn_weights, p=self.dropout, training=self.training | |
| ) | |
| attn_output = torch.bmm(attn_probs, value_states) | |
| if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
| f" {attn_output.size()}" | |
| ) | |
| attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
| attn_output = attn_output.transpose(1, 2) | |
| attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) | |
| attn_output = self.out_proj(attn_output) | |
| return attn_output, attn_weights_reshaped | |
| class CLIPMLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.activation_fn = ACT2FN[config.hidden_act] | |
| self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
| self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
| def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.fc1(hidden_states) | |
| hidden_states = self.activation_fn(hidden_states) | |
| hidden_states = self.fc2(hidden_states) | |
| return hidden_states | |
| class CLIPEncoderLayer(nn.Module): | |
| def __init__(self, config: CLIPConfig): | |
| super().__init__() | |
| self.embed_dim = config.hidden_size | |
| self.self_attn = CLIPAttention(config) | |
| self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
| self.mlp = CLIPMLP(config) | |
| self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| causal_attention_mask: torch.Tensor, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[torch.FloatTensor]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`): attention mask of size | |
| `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
| `(config.encoder_attention_heads,)`. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| """ | |
| residual = hidden_states | |
| hidden_states = self.layer_norm1(hidden_states) | |
| hidden_states, attn_weights = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| causal_attention_mask=causal_attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = residual + hidden_states | |
| residual = hidden_states | |
| hidden_states = self.layer_norm2(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = residual + hidden_states | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (attn_weights,) | |
| return outputs | |
| class CLIPPreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = CLIPConfig | |
| base_model_prefix = "clip" | |
| supports_gradient_checkpointing = True | |
| def _init_weights(self, module): | |
| """Initialize the weights""" | |
| factor = self.config.initializer_factor | |
| if isinstance(module, CLIPTextEmbeddings): | |
| module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) | |
| module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) | |
| elif isinstance(module, CLIPVisionEmbeddings): | |
| factor = self.config.initializer_factor | |
| nn.init.normal_( | |
| module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor | |
| ) | |
| nn.init.normal_( | |
| module.patch_embedding.weight, | |
| std=module.config.initializer_range * factor, | |
| ) | |
| nn.init.normal_( | |
| module.position_embedding.weight, | |
| std=module.config.initializer_range * factor, | |
| ) | |
| elif isinstance(module, CLIPAttention): | |
| factor = self.config.initializer_factor | |
| in_proj_std = ( | |
| (module.embed_dim**-0.5) | |
| * ((2 * module.config.num_hidden_layers) ** -0.5) | |
| * factor | |
| ) | |
| out_proj_std = (module.embed_dim**-0.5) * factor | |
| nn.init.normal_(module.q_proj.weight, std=in_proj_std) | |
| nn.init.normal_(module.k_proj.weight, std=in_proj_std) | |
| nn.init.normal_(module.v_proj.weight, std=in_proj_std) | |
| nn.init.normal_(module.out_proj.weight, std=out_proj_std) | |
| elif isinstance(module, CLIPMLP): | |
| factor = self.config.initializer_factor | |
| in_proj_std = ( | |
| (module.config.hidden_size**-0.5) | |
| * ((2 * module.config.num_hidden_layers) ** -0.5) | |
| * factor | |
| ) | |
| fc_std = (2 * module.config.hidden_size) ** -0.5 * factor | |
| nn.init.normal_(module.fc1.weight, std=fc_std) | |
| nn.init.normal_(module.fc2.weight, std=in_proj_std) | |
| elif isinstance(module, CLIPModel): | |
| nn.init.normal_( | |
| module.text_projection.weight, | |
| std=module.text_embed_dim**-0.5 * self.config.initializer_factor, | |
| ) | |
| nn.init.normal_( | |
| module.visual_projection.weight, | |
| std=module.vision_embed_dim**-0.5 * self.config.initializer_factor, | |
| ) | |
| elif isinstance(module, CLIPVisionModelWithProjection): | |
| nn.init.normal_( | |
| module.visual_projection.weight, | |
| std=self.config.hidden_size**-0.5 * self.config.initializer_factor, | |
| ) | |
| elif isinstance(module, CLIPTextModelWithProjection): | |
| nn.init.normal_( | |
| module.text_projection.weight, | |
| std=self.config.hidden_size**-0.5 * self.config.initializer_factor, | |
| ) | |
| elif isinstance(module, CLIPForImageClassification): | |
| nn.init.normal_( | |
| module.classifier.weight, | |
| std=self.config.vision_config.hidden_size**-0.5 | |
| * self.config.initializer_factor, | |
| ) | |
| if isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| if isinstance(module, nn.Linear) and module.bias is not None: | |
| module.bias.data.zero_() | |
| CLIP_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`CLIPConfig`]): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| CLIP_TEXT_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
| it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.max_position_embeddings - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| CLIP_VISION_INPUTS_DOCSTRING = r""" | |
| Args: | |
| pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | |
| [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| CLIP_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
| it. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.max_position_embeddings - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
| Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using | |
| [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. | |
| return_loss (`bool`, *optional*): | |
| Whether or not to return the contrastive loss. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class CLIPEncoder(nn.Module): | |
| """ | |
| Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
| [`CLIPEncoderLayer`]. | |
| Args: | |
| config: CLIPConfig | |
| """ | |
| def __init__(self, config: CLIPConfig): | |
| super().__init__() | |
| self.config = config | |
| self.layers = nn.ModuleList( | |
| [CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)] | |
| ) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| inputs_embeds, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| causal_attention_mask: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutput]: | |
| r""" | |
| Args: | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
| than the model's internal embedding lookup matrix. | |
| attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Causal mask for the text model. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
| for more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| encoder_states = () if output_hidden_states else None | |
| all_attentions = () if output_attentions else None | |
| hidden_states = inputs_embeds | |
| for idx, encoder_layer in enumerate(self.layers): | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| layer_outputs = self._gradient_checkpointing_func( | |
| encoder_layer.__call__, | |
| hidden_states, | |
| attention_mask, | |
| causal_attention_mask, | |
| output_attentions, | |
| ) | |
| else: | |
| layer_outputs = encoder_layer( | |
| hidden_states, | |
| attention_mask, | |
| causal_attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[1],) | |
| if output_hidden_states: | |
| encoder_states = encoder_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [hidden_states, encoder_states, all_attentions] | |
| if v is not None | |
| ) | |
| return BaseModelOutput( | |
| last_hidden_state=hidden_states, | |
| hidden_states=encoder_states, | |
| attentions=all_attentions, | |
| ) | |
| class CLIPTextTransformer(nn.Module): | |
| def __init__(self, config: CLIPTextConfig): | |
| super().__init__() | |
| self.config = config | |
| embed_dim = config.hidden_size | |
| self.embeddings = CLIPTextEmbeddings(config) | |
| self.encoder = CLIPEncoder(config) | |
| self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
| # For `pooled_output` computation | |
| self.eos_token_id = config.eos_token_id | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| Returns: | |
| """ | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| if input_ids is None: | |
| raise ValueError("You have to specify input_ids") | |
| input_shape = input_ids.size() | |
| input_ids = input_ids.view(-1, input_shape[-1]) | |
| hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) | |
| # CLIP's text model uses causal mask, prepare it here. | |
| # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 | |
| causal_attention_mask = _create_4d_causal_attention_mask( | |
| input_shape, hidden_states.dtype, device=hidden_states.device | |
| ) | |
| # expand attention_mask | |
| if attention_mask is not None: | |
| # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
| attention_mask = _prepare_4d_attention_mask( | |
| attention_mask, hidden_states.dtype | |
| ) | |
| encoder_outputs = self.encoder( | |
| inputs_embeds=hidden_states, | |
| attention_mask=attention_mask, | |
| causal_attention_mask=causal_attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| last_hidden_state = encoder_outputs[0] | |
| last_hidden_state = self.final_layer_norm(last_hidden_state) | |
| if self.eos_token_id == 2: | |
| # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. | |
| # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added | |
| # ------------------------------------------------------------ | |
| # text_embeds.shape = [batch_size, sequence_length, transformer.width] | |
| # take features from the eot embedding (eot_token is the highest number in each sequence) | |
| # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 | |
| pooled_output = last_hidden_state[ | |
| torch.arange( | |
| last_hidden_state.shape[0], device=last_hidden_state.device | |
| ), | |
| input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax( | |
| dim=-1 | |
| ), | |
| ] | |
| else: | |
| # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible) | |
| pooled_output = last_hidden_state[ | |
| torch.arange( | |
| last_hidden_state.shape[0], device=last_hidden_state.device | |
| ), | |
| # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`) | |
| # Note: we assume each sequence (along batch dim.) contains an `eos_token_id` (e.g. prepared by the tokenizer) | |
| ( | |
| input_ids.to(dtype=torch.int, device=last_hidden_state.device) | |
| == self.eos_token_id | |
| ) | |
| .int() | |
| .argmax(dim=-1), | |
| ] | |
| if not return_dict: | |
| return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
| return BaseModelOutputWithPooling( | |
| last_hidden_state=last_hidden_state, | |
| pooler_output=pooled_output, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| ) | |
| class CLIPTextModel(CLIPPreTrainedModel): | |
| config_class = CLIPTextConfig | |
| _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"] | |
| def __init__(self, config: CLIPTextConfig): | |
| super().__init__(config) | |
| self.text_model = CLIPTextTransformer(config) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self) -> nn.Module: | |
| return self.text_model.embeddings.token_embedding | |
| def set_input_embeddings(self, value): | |
| self.text_model.embeddings.token_embedding = value | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from transformers import AutoTokenizer, CLIPTextModel | |
| >>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> last_hidden_state = outputs.last_hidden_state | |
| >>> pooled_output = outputs.pooler_output # pooled (EOS token) states | |
| ```""" | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| return self.text_model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| class CLIPVisionTransformer(nn.Module): | |
| def __init__(self, config: CLIPVisionConfig): | |
| super().__init__() | |
| self.config = config | |
| embed_dim = config.hidden_size | |
| self.embeddings = CLIPVisionEmbeddings(config) | |
| self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
| self.encoder = CLIPEncoder(config) | |
| self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
| def forward( | |
| self, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| Returns: | |
| """ | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| if pixel_values is None: | |
| raise ValueError("You have to specify pixel_values") | |
| hidden_states = self.embeddings(pixel_values) | |
| hidden_states = self.pre_layrnorm(hidden_states) | |
| encoder_outputs = self.encoder( | |
| inputs_embeds=hidden_states, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| last_hidden_state = encoder_outputs[0] | |
| pooled_output = last_hidden_state[:, 0, :] | |
| pooled_output = self.post_layernorm(pooled_output) | |
| if not return_dict: | |
| return (last_hidden_state, pooled_output) + encoder_outputs[1:] | |
| return BaseModelOutputWithPooling( | |
| last_hidden_state=last_hidden_state, | |
| pooler_output=pooled_output, | |
| hidden_states=encoder_outputs.hidden_states, | |
| attentions=encoder_outputs.attentions, | |
| ) | |
| class CLIPVisionModel(CLIPPreTrainedModel): | |
| config_class = CLIPVisionConfig | |
| main_input_name = "pixel_values" | |
| _no_split_modules = ["CLIPEncoderLayer"] | |
| def __init__(self, config: CLIPVisionConfig): | |
| super().__init__(config) | |
| self.vision_model = CLIPVisionTransformer(config) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self) -> nn.Module: | |
| return self.vision_model.embeddings.patch_embedding | |
| def forward( | |
| self, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPooling]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, CLIPVisionModel | |
| >>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> inputs = processor(images=image, return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> last_hidden_state = outputs.last_hidden_state | |
| >>> pooled_output = outputs.pooler_output # pooled CLS states | |
| ```""" | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| return self.vision_model( | |
| pixel_values=pixel_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| class CLIPModel(CLIPPreTrainedModel): | |
| config_class = CLIPConfig | |
| _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"] | |
| def __init__(self, config: CLIPConfig): | |
| super().__init__(config) | |
| if not isinstance(config.text_config, CLIPTextConfig): | |
| raise ValueError( | |
| "config.text_config is expected to be of type CLIPTextConfig but is of type" | |
| f" {type(config.text_config)}." | |
| ) | |
| if not isinstance(config.vision_config, CLIPVisionConfig): | |
| raise ValueError( | |
| "config.vision_config is expected to be of type CLIPVisionConfig but is of type" | |
| f" {type(config.vision_config)}." | |
| ) | |
| text_config = config.text_config | |
| vision_config = config.vision_config | |
| self.projection_dim = config.projection_dim | |
| self.text_embed_dim = text_config.hidden_size | |
| self.vision_embed_dim = vision_config.hidden_size | |
| self.text_model = CLIPTextTransformer(text_config) | |
| self.vision_model = CLIPVisionTransformer(vision_config) | |
| self.visual_projection = nn.Linear( | |
| self.vision_embed_dim, self.projection_dim, bias=False | |
| ) | |
| self.text_projection = nn.Linear( | |
| self.text_embed_dim, self.projection_dim, bias=False | |
| ) | |
| self.logit_scale = nn.Parameter( | |
| torch.tensor(self.config.logit_scale_init_value) | |
| ) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_text_features( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> torch.FloatTensor: | |
| r""" | |
| Returns: | |
| text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by | |
| applying the projection layer to the pooled output of [`CLIPTextModel`]. | |
| Examples: | |
| ```python | |
| >>> from transformers import AutoTokenizer, CLIPModel | |
| >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") | |
| >>> text_features = model.get_text_features(**inputs) | |
| ```""" | |
| # Use CLIP model's config for some fields (if specified) instead of those of vision & text components. | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| text_outputs = self.text_model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| pooled_output = text_outputs[1] | |
| text_features = self.text_projection(pooled_output) | |
| return text_features | |
| def get_image_features( | |
| self, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> torch.FloatTensor: | |
| r""" | |
| Returns: | |
| image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by | |
| applying the projection layer to the pooled output of [`CLIPVisionModel`]. | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, CLIPModel | |
| >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> inputs = processor(images=image, return_tensors="pt") | |
| >>> image_features = model.get_image_features(**inputs) | |
| ```""" | |
| # Use CLIP model's config for some fields (if specified) instead of those of vision & text components. | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| vision_outputs = self.vision_model( | |
| pixel_values=pixel_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| pooled_output = vision_outputs[1] # pooled_output | |
| image_features = self.visual_projection(pooled_output) | |
| return image_features | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| return_loss: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, CLIPOutput]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, CLIPModel | |
| >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> inputs = processor( | |
| ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True | |
| ... ) | |
| >>> outputs = model(**inputs) | |
| >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score | |
| >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities | |
| ```""" | |
| # Use CLIP model's config for some fields (if specified) instead of those of vision & text components. | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| vision_outputs = self.vision_model( | |
| pixel_values=pixel_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| text_outputs = self.text_model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| image_embeds = vision_outputs[1] | |
| image_embeds = self.visual_projection(image_embeds) | |
| text_embeds = text_outputs[1] | |
| text_embeds = self.text_projection(text_embeds) | |
| # normalized features | |
| image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) | |
| text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) | |
| # cosine similarity as logits | |
| logit_scale = self.logit_scale.exp() | |
| logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale | |
| logits_per_image = logits_per_text.t() | |
| loss = None | |
| if return_loss: | |
| loss = clip_loss(logits_per_text) | |
| if not return_dict: | |
| output = ( | |
| logits_per_image, | |
| logits_per_text, | |
| text_embeds, | |
| image_embeds, | |
| text_outputs, | |
| vision_outputs, | |
| ) | |
| return ((loss,) + output) if loss is not None else output | |
| return CLIPOutput( | |
| loss=loss, | |
| logits_per_image=logits_per_image, | |
| logits_per_text=logits_per_text, | |
| text_embeds=text_embeds, | |
| image_embeds=image_embeds, | |
| text_model_output=text_outputs, | |
| vision_model_output=vision_outputs, | |
| ) | |
| class CLIPTextModelWithProjection(CLIPPreTrainedModel): | |
| config_class = CLIPTextConfig | |
| _no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"] | |
| def __init__(self, config: CLIPTextConfig): | |
| super().__init__(config) | |
| self.text_model = CLIPTextTransformer(config) | |
| self.text_projection = nn.Linear( | |
| config.hidden_size, config.projection_dim, bias=False | |
| ) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self) -> nn.Module: | |
| return self.text_model.embeddings.token_embedding | |
| def set_input_embeddings(self, value): | |
| self.text_model.embeddings.token_embedding = value | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, CLIPTextModelOutput]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from transformers import AutoTokenizer, CLIPTextModelWithProjection | |
| >>> model = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> text_embeds = outputs.text_embeds | |
| ```""" | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| text_outputs = self.text_model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| pooled_output = text_outputs[1] | |
| text_embeds = self.text_projection(pooled_output) | |
| if not return_dict: | |
| outputs = (text_embeds, text_outputs[0]) + text_outputs[2:] | |
| return tuple(output for output in outputs if output is not None) | |
| return CLIPTextModelOutput( | |
| text_embeds=text_embeds, | |
| last_hidden_state=text_outputs.last_hidden_state, | |
| hidden_states=text_outputs.hidden_states, | |
| attentions=text_outputs.attentions, | |
| ) | |
| class CLIPVisionModelWithProjection(CLIPPreTrainedModel): | |
| config_class = CLIPVisionConfig | |
| main_input_name = "pixel_values" | |
| def __init__(self, config: CLIPVisionConfig): | |
| super().__init__(config) | |
| self.vision_model = CLIPVisionTransformer(config) | |
| self.visual_projection = nn.Linear( | |
| config.hidden_size, config.projection_dim, bias=False | |
| ) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self) -> nn.Module: | |
| return self.vision_model.embeddings.patch_embedding | |
| def forward( | |
| self, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, CLIPVisionModelOutput]: | |
| r""" | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from PIL import Image | |
| >>> import requests | |
| >>> from transformers import AutoProcessor, CLIPVisionModelWithProjection | |
| >>> model = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
| >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| >>> image = Image.open(requests.get(url, stream=True).raw) | |
| >>> inputs = processor(images=image, return_tensors="pt") | |
| >>> outputs = model(**inputs) | |
| >>> image_embeds = outputs.image_embeds | |
| ```""" | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| vision_outputs = self.vision_model( | |
| pixel_values=pixel_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| pooled_output = vision_outputs[1] # pooled_output | |
| image_embeds = self.visual_projection(pooled_output) | |
| if not return_dict: | |
| outputs = (image_embeds, vision_outputs[0]) + vision_outputs[2:] | |
| return tuple(output for output in outputs if output is not None) | |
| return CLIPVisionModelOutput( | |
| image_embeds=image_embeds, | |
| last_hidden_state=vision_outputs.last_hidden_state, | |
| hidden_states=vision_outputs.hidden_states, | |
| attentions=vision_outputs.attentions, | |
| ) | |
| class CLIPForImageClassification(CLIPPreTrainedModel): | |
| main_input_name = "pixel_values" | |
| def __init__(self, config: CLIPConfig) -> None: | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.vision_model = CLIPVisionTransformer(config.vision_config) | |
| # Classifier head | |
| self.classifier = ( | |
| nn.Linear(config.vision_config.hidden_size, config.num_labels) | |
| if config.num_labels > 0 | |
| else nn.Identity() | |
| ) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| pixel_values: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[tuple, ImageClassifierOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the image classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| outputs = self.vision_model( | |
| pixel_values, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| # average pool the patch tokens | |
| sequence_output = torch.mean(sequence_output[:, 1:, :], dim=1) | |
| # apply classifier | |
| logits = self.classifier(sequence_output) | |
| loss = None | |
| if labels is not None: | |
| # move labels to correct device to enable model parallelism | |
| labels = labels.to(logits.device) | |
| if self.config.problem_type is None: | |
| if self.num_labels == 1: | |
| self.config.problem_type = "regression" | |
| elif self.num_labels > 1 and ( | |
| labels.dtype == torch.long or labels.dtype == torch.int | |
| ): | |
| self.config.problem_type = "single_label_classification" | |
| else: | |
| self.config.problem_type = "multi_label_classification" | |
| if self.config.problem_type == "regression": | |
| loss_fct = MSELoss() | |
| if self.num_labels == 1: | |
| loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
| else: | |
| loss = loss_fct(logits, labels) | |
| elif self.config.problem_type == "single_label_classification": | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
| elif self.config.problem_type == "multi_label_classification": | |
| loss_fct = BCEWithLogitsLoss() | |
| loss = loss_fct(logits, labels) | |
| if not return_dict: | |
| output = (logits,) + outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return ImageClassifierOutput( | |
| loss=loss, | |
| logits=logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |