Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import spaces
|
4 |
+
import torch
|
5 |
+
import random
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
from diffusers import FluxPipeline, FluxTransformer2DModel, GGUFQuantizationConfig
|
9 |
+
from diffusers.utils import load_image
|
10 |
+
|
11 |
+
MAX_SEED = np.iinfo(np.int32).max
|
12 |
+
|
13 |
+
# Load GGUF transformer model from Hugging Face
|
14 |
+
gguf_path = "https://huggingface.co/bullerwins/FLUX.1-Kontext-dev-GGUF/resolve/main/flux1-kontext-dev-Q8_0.gguf"
|
15 |
+
|
16 |
+
transformer = FluxTransformer2DModel.from_single_file(
|
17 |
+
gguf_path,
|
18 |
+
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
|
19 |
+
torch_dtype=torch.bfloat16,
|
20 |
+
)
|
21 |
+
|
22 |
+
# Create pipeline with GGUF transformer
|
23 |
+
pipe = FluxPipeline.from_pretrained(
|
24 |
+
"black-forest-labs/FLUX.1-dev",
|
25 |
+
transformer=transformer,
|
26 |
+
torch_dtype=torch.bfloat16,
|
27 |
+
).to("cuda")
|
28 |
+
|
29 |
+
@spaces.GPU
|
30 |
+
def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
|
31 |
+
"""
|
32 |
+
Perform image editing using the FLUX.1 Kontext pipeline.
|
33 |
+
|
34 |
+
This function takes an input image and a text prompt to generate a modified version
|
35 |
+
of the image based on the provided instructions. It uses the FLUX.1 Kontext model
|
36 |
+
for contextual image editing tasks.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
input_image (PIL.Image.Image): The input image to be edited. Will be converted
|
40 |
+
to RGB format if not already in that format.
|
41 |
+
prompt (str): Text description of the desired edit to apply to the image.
|
42 |
+
Examples: "Remove glasses", "Add a hat", "Change background to beach".
|
43 |
+
seed (int, optional): Random seed for reproducible generation. Defaults to 42.
|
44 |
+
Must be between 0 and MAX_SEED (2^31 - 1).
|
45 |
+
randomize_seed (bool, optional): If True, generates a random seed instead of
|
46 |
+
using the provided seed value. Defaults to False.
|
47 |
+
guidance_scale (float, optional): Controls how closely the model follows the
|
48 |
+
prompt. Higher values mean stronger adherence to the prompt but may reduce
|
49 |
+
image quality. Range: 1.0-10.0. Defaults to 2.5.
|
50 |
+
steps (int, optional): Controls how many steps to run the diffusion model for.
|
51 |
+
Range: 1-30. Defaults to 28.
|
52 |
+
progress (gr.Progress, optional): Gradio progress tracker for monitoring
|
53 |
+
generation progress. Defaults to gr.Progress(track_tqdm=True).
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
tuple: A 3-tuple containing:
|
57 |
+
- PIL.Image.Image: The generated/edited image
|
58 |
+
- int: The seed value used for generation (useful when randomize_seed=True)
|
59 |
+
- gr.update: Gradio update object to make the reuse button visible
|
60 |
+
|
61 |
+
Example:
|
62 |
+
>>> edited_image, used_seed, button_update = infer(
|
63 |
+
... input_image=my_image,
|
64 |
+
... prompt="Add sunglasses",
|
65 |
+
... seed=123,
|
66 |
+
... randomize_seed=False,
|
67 |
+
... guidance_scale=2.5
|
68 |
+
... )
|
69 |
+
"""
|
70 |
+
if randomize_seed:
|
71 |
+
seed = random.randint(0, MAX_SEED)
|
72 |
+
|
73 |
+
if input_image:
|
74 |
+
input_image = input_image.convert("RGB")
|
75 |
+
image = pipe(
|
76 |
+
image=input_image,
|
77 |
+
prompt=prompt,
|
78 |
+
guidance_scale=guidance_scale,
|
79 |
+
width = input_image.size[0],
|
80 |
+
height = input_image.size[1],
|
81 |
+
num_inference_steps=steps,
|
82 |
+
generator=torch.Generator().manual_seed(seed),
|
83 |
+
).images[0]
|
84 |
+
else:
|
85 |
+
image = pipe(
|
86 |
+
prompt=prompt,
|
87 |
+
guidance_scale=guidance_scale,
|
88 |
+
num_inference_steps=steps,
|
89 |
+
generator=torch.Generator().manual_seed(seed),
|
90 |
+
).images[0]
|
91 |
+
return image, seed, gr.Button(visible=True)
|
92 |
+
|
93 |
+
@spaces.GPU
|
94 |
+
def infer_example(input_image, prompt):
|
95 |
+
image, seed, _ = infer(input_image, prompt)
|
96 |
+
return image, seed
|
97 |
+
|
98 |
+
css="""
|
99 |
+
#col-container {
|
100 |
+
margin: 0 auto;
|
101 |
+
max-width: 960px;
|
102 |
+
}
|
103 |
+
"""
|
104 |
+
|
105 |
+
with gr.Blocks(css=css) as demo:
|
106 |
+
|
107 |
+
with gr.Column(elem_id="col-container"):
|
108 |
+
gr.Markdown(f"""# FLUX.1 Kontext [dev]
|
109 |
+
Image editing and manipulation model guidance-distilled from FLUX.1 Kontext [pro], [[blog]](https://bfl.ai/announcements/flux-1-kontext-dev) [[model]](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev)
|
110 |
+
""")
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column():
|
113 |
+
input_image = gr.Image(label="Upload the image for editing", type="pil")
|
114 |
+
with gr.Row():
|
115 |
+
prompt = gr.Text(
|
116 |
+
label="Prompt",
|
117 |
+
show_label=False,
|
118 |
+
max_lines=1,
|
119 |
+
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
|
120 |
+
container=False,
|
121 |
+
)
|
122 |
+
run_button = gr.Button("Run", scale=0)
|
123 |
+
with gr.Accordion("Advanced Settings", open=False):
|
124 |
+
|
125 |
+
seed = gr.Slider(
|
126 |
+
label="Seed",
|
127 |
+
minimum=0,
|
128 |
+
maximum=MAX_SEED,
|
129 |
+
step=1,
|
130 |
+
value=0,
|
131 |
+
)
|
132 |
+
|
133 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
134 |
+
|
135 |
+
guidance_scale = gr.Slider(
|
136 |
+
label="Guidance Scale",
|
137 |
+
minimum=1,
|
138 |
+
maximum=10,
|
139 |
+
step=0.1,
|
140 |
+
value=2.5,
|
141 |
+
)
|
142 |
+
|
143 |
+
steps = gr.Slider(
|
144 |
+
label="Steps",
|
145 |
+
minimum=1,
|
146 |
+
maximum=30,
|
147 |
+
value=28,
|
148 |
+
step=1
|
149 |
+
)
|
150 |
+
|
151 |
+
with gr.Column():
|
152 |
+
result = gr.Image(label="Result", show_label=False, interactive=False)
|
153 |
+
reuse_button = gr.Button("Reuse this image", visible=False)
|
154 |
+
|
155 |
+
|
156 |
+
examples = gr.Examples(
|
157 |
+
examples=[
|
158 |
+
["flowers.png", "turn the flowers into sunflowers"],
|
159 |
+
["monster.png", "make this monster ride a skateboard on the beach"],
|
160 |
+
["cat.png", "make this cat happy"]
|
161 |
+
],
|
162 |
+
inputs=[input_image, prompt],
|
163 |
+
outputs=[result, seed],
|
164 |
+
fn=infer_example,
|
165 |
+
cache_examples="lazy"
|
166 |
+
)
|
167 |
+
|
168 |
+
gr.on(
|
169 |
+
triggers=[run_button.click, prompt.submit],
|
170 |
+
fn = infer,
|
171 |
+
inputs = [input_image, prompt, seed, randomize_seed, guidance_scale, steps],
|
172 |
+
outputs = [result, seed, reuse_button]
|
173 |
+
)
|
174 |
+
reuse_button.click(
|
175 |
+
fn = lambda image: image,
|
176 |
+
inputs = [result],
|
177 |
+
outputs = [input_image]
|
178 |
+
)
|
179 |
+
|
180 |
+
demo.launch(mcp_server=True)
|