catactivationsound commited on
Commit
1ccd7bb
·
1 Parent(s): 2bbb9e5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -12,9 +12,9 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("catactivationsound/speecht5_finetuned_voxpopuli_hu")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("catactivationsound/speecht5_finetuned_voxpopuli_hu").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
@@ -22,7 +22,7 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "hu"})
26
  return outputs["text"]
27
 
28
 
@@ -41,9 +41,9 @@ def speech_to_speech_translation(audio):
41
 
42
  title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Hungarian.
45
  Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation,
46
- and a [finetuned version](https://huggingface.co/catactivationsound/speecht5_finetuned_voxpopuli_hu)
47
  of Microsoft's [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) for text-to-speech:
48
 
49
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
16
 
17
+ model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
 
22
 
23
 
24
  def translate(audio):
25
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
26
  return outputs["text"]
27
 
28
 
 
41
 
42
  title = "Cascaded STST"
43
  description = """
44
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Dutch.
45
  Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation,
46
+ and a [finetuned version](https://huggingface.co/sanchit-gandhi/speecht5_tts_vox_nl)
47
  of Microsoft's [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) for text-to-speech:
48
 
49
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")