Upload tabicl.ipynb
Browse files- tabicl.ipynb +680 -0
tabicl.ipynb
ADDED
@@ -0,0 +1,680 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {
|
7 |
+
"colab": {
|
8 |
+
"base_uri": "https://localhost:8080/"
|
9 |
+
},
|
10 |
+
"collapsed": true,
|
11 |
+
"id": "PmRSSg__E-qm",
|
12 |
+
"outputId": "2aecdb88-1734-46de-b579-9b169e5163b7"
|
13 |
+
},
|
14 |
+
"outputs": [
|
15 |
+
{
|
16 |
+
"output_type": "stream",
|
17 |
+
"name": "stdout",
|
18 |
+
"text": [
|
19 |
+
"\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/103.9 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m103.9/103.9 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
20 |
+
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
21 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m160.4/160.4 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
22 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m95.8/95.8 kB\u001b[0m \u001b[31m10.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
23 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.3/2.3 MB\u001b[0m \u001b[31m57.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
24 |
+
"\u001b[?25h Building wheel for liac-arff (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
25 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m471.4/471.4 kB\u001b[0m \u001b[31m10.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
26 |
+
"\u001b[?25h"
|
27 |
+
]
|
28 |
+
}
|
29 |
+
],
|
30 |
+
"source": [
|
31 |
+
"!pip install -q tabicl\n",
|
32 |
+
"!pip install -q openml\n",
|
33 |
+
"!pip install -q kaggle\n",
|
34 |
+
"!pip install -q skrub -U"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
+
"metadata": {
|
41 |
+
"colab": {
|
42 |
+
"base_uri": "https://localhost:8080/"
|
43 |
+
},
|
44 |
+
"id": "xTQPIegPezQC",
|
45 |
+
"outputId": "3fe90c6b-b82a-468a-a335-587286a93696"
|
46 |
+
},
|
47 |
+
"outputs": [
|
48 |
+
{
|
49 |
+
"output_type": "stream",
|
50 |
+
"name": "stdout",
|
51 |
+
"text": [
|
52 |
+
"Mounted at /content/MyDrive\n"
|
53 |
+
]
|
54 |
+
}
|
55 |
+
],
|
56 |
+
"source": [
|
57 |
+
"from google.colab import drive\n",
|
58 |
+
"drive.mount('/content/MyDrive')"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"source": [
|
64 |
+
"from typing import Optional\n",
|
65 |
+
"import os, json\n",
|
66 |
+
"import numpy as np\n",
|
67 |
+
"import pandas as pd\n",
|
68 |
+
"import torch\n",
|
69 |
+
"from skrub import TableVectorizer\n",
|
70 |
+
"from tabicl import TabICLClassifier\n",
|
71 |
+
"from sklearn.impute import SimpleImputer\n",
|
72 |
+
"from sklearn.pipeline import make_pipeline\n",
|
73 |
+
"from sklearn.preprocessing import OrdinalEncoder\n",
|
74 |
+
"from sklearn.metrics import accuracy_score, roc_auc_score"
|
75 |
+
],
|
76 |
+
"metadata": {
|
77 |
+
"id": "_Ou6aK8ZkReU"
|
78 |
+
},
|
79 |
+
"execution_count": null,
|
80 |
+
"outputs": []
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "markdown",
|
84 |
+
"source": [
|
85 |
+
"### Custom Softmax"
|
86 |
+
],
|
87 |
+
"metadata": {
|
88 |
+
"id": "NoR1dLt_kcTM"
|
89 |
+
}
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"cell_type": "code",
|
93 |
+
"source": [
|
94 |
+
"# raw_logits = None\n",
|
95 |
+
"# @staticmethod\n",
|
96 |
+
"# def hook_softmax(x, axis: int = -1, temperature: float = 0.9):\n",
|
97 |
+
"# \"\"\"Compute softmax values with temperature scaling using NumPy.\n",
|
98 |
+
"\n",
|
99 |
+
"# Parameters\n",
|
100 |
+
"# ----------\n",
|
101 |
+
"# x : ndarray\n",
|
102 |
+
"# Input array of logits.\n",
|
103 |
+
"\n",
|
104 |
+
"# axis : int, default=-1\n",
|
105 |
+
"# Axis along which to compute softmax.\n",
|
106 |
+
"\n",
|
107 |
+
"# temperature : float, default=0.9\n",
|
108 |
+
"# Temperature scaling parameter.\n",
|
109 |
+
"\n",
|
110 |
+
"# Returns\n",
|
111 |
+
"# -------\n",
|
112 |
+
"# ndarray\n",
|
113 |
+
"# Softmax probabilities along the specified axis, with the same shape as the input.\n",
|
114 |
+
"# \"\"\"\n",
|
115 |
+
"# global raw_logits\n",
|
116 |
+
"# raw_logits = np.copy(x) # save raw logits\n",
|
117 |
+
"# x = x / temperature\n",
|
118 |
+
"# # Subtract max for numerical stability\n",
|
119 |
+
"# x_max = np.max(x, axis=axis, keepdims=True)\n",
|
120 |
+
"# e_x = np.exp(x - x_max)\n",
|
121 |
+
"# # Compute softmax\n",
|
122 |
+
"# return e_x / np.sum(e_x, axis=axis, keepdims=True)\n",
|
123 |
+
"\n",
|
124 |
+
"# # Replace original softmax with hooked one\n",
|
125 |
+
"# TabICLClassifier.softmax = hook_softmax"
|
126 |
+
],
|
127 |
+
"metadata": {
|
128 |
+
"id": "MnL-8godkV5G"
|
129 |
+
},
|
130 |
+
"execution_count": null,
|
131 |
+
"outputs": []
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "markdown",
|
135 |
+
"source": [
|
136 |
+
"## Conformal Prediction"
|
137 |
+
],
|
138 |
+
"metadata": {
|
139 |
+
"id": "wgxFkG3Fj9kD"
|
140 |
+
}
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"source": [
|
145 |
+
"import numpy as np\n",
|
146 |
+
"from numpy._typing import NDArray\n",
|
147 |
+
"\n",
|
148 |
+
"def confidence_score(probs: NDArray):\n",
|
149 |
+
" return np.max(-probs, axis=1)\n",
|
150 |
+
"\n",
|
151 |
+
"def margin_score(probs: NDArray):\n",
|
152 |
+
" sorted_probs = np.sort(probs, axis=1)\n",
|
153 |
+
" return sorted_probs[:, -2] - sorted_probs[:, -1]\n",
|
154 |
+
"\n",
|
155 |
+
"def entropy_score(probs: NDArray, eps = 1e-9):\n",
|
156 |
+
" return -np.sum(probs * np.log(probs + eps), axis=1)\n",
|
157 |
+
"\n",
|
158 |
+
"def nnl_score(probs: NDArray, true_labels: NDArray, eps = 1e-9):\n",
|
159 |
+
" return -np.log(probs[np.arange(probs.shape[0]), true_labels] + eps)\n",
|
160 |
+
"\n",
|
161 |
+
"def ri_score(probs: NDArray, eps = 1e-9):\n",
|
162 |
+
" return -np.sum(np.log(probs + eps), axis=1)\n",
|
163 |
+
"\n",
|
164 |
+
"\n",
|
165 |
+
"def lac_conformal_score(probs: NDArray, true_labels: NDArray):\n",
|
166 |
+
" \"\"\"\n",
|
167 |
+
" Compute the LAC conformal score for a batch of softmax score vectors and true labels.\n",
|
168 |
+
"\n",
|
169 |
+
" Parameters:\n",
|
170 |
+
" - probs: 2D numpy array of shape (n_samples, num_classes), softmax probs for each sample\n",
|
171 |
+
" - true_labels: 1D numpy array of shape (n_samples,), true class labels for each sample\n",
|
172 |
+
"\n",
|
173 |
+
" Returns:\n",
|
174 |
+
" - conformal_scores: 1D numpy array of shape (n_samples,), LAC conformal probs for each sample\n",
|
175 |
+
" \"\"\"\n",
|
176 |
+
" conformal_scores = 1 - probs[np.arange(probs.shape[0]), true_labels]\n",
|
177 |
+
" return conformal_scores\n",
|
178 |
+
"\n",
|
179 |
+
"def aps_conformal_score(probs: NDArray, true_labels: NDArray):\n",
|
180 |
+
" \"\"\"\n",
|
181 |
+
" Compute the APS conformal score for a batch of softmax score vectors and true labels.\n",
|
182 |
+
"\n",
|
183 |
+
" Parameters:\n",
|
184 |
+
" - probs: 2D numpy array of shape (n_samples, num_classes), softmax probs for each sample\n",
|
185 |
+
" - true_labels: 1D numpy array of shape (n_samples,), true class labels for each sample\n",
|
186 |
+
"\n",
|
187 |
+
" Returns:\n",
|
188 |
+
" - conformal_scores: 1D numpy array of shape (n_samples,), APS conformal probs for each sample\n",
|
189 |
+
" \"\"\"\n",
|
190 |
+
" # Create a mask for each sample: probs >= true_score\n",
|
191 |
+
" true_scores = probs[np.arange(probs.shape[0]), true_labels]\n",
|
192 |
+
" mask = probs >= true_scores[:, np.newaxis]\n",
|
193 |
+
" # Sum along the class axis\n",
|
194 |
+
" conformal_scores = np.sum(probs * mask, axis=1)\n",
|
195 |
+
"\n",
|
196 |
+
" return conformal_scores\n",
|
197 |
+
"\n",
|
198 |
+
"def compute_quantile(probs: NDArray, calibration_labels, n: int, type = \"lac\", alpha = 0.1):\n",
|
199 |
+
" if type == \"lac\":\n",
|
200 |
+
" scores = lac_conformal_score(probs, calibration_labels)\n",
|
201 |
+
" elif type == \"aps\":\n",
|
202 |
+
" scores = aps_conformal_score(probs, calibration_labels)\n",
|
203 |
+
" else:\n",
|
204 |
+
" raise AttributeError(f\"type {type} is not supported. Use 'lac' or 'aps'\")\n",
|
205 |
+
"\n",
|
206 |
+
" q_level = np.ceil((n + 1) * (1 - alpha)) / n\n",
|
207 |
+
" return np.quantile(scores, q_level, method=\"higher\")\n",
|
208 |
+
"\n",
|
209 |
+
"def lac_prediction_set(calibration_probs: NDArray, probs: NDArray, calibration_labels: NDArray, alpha = 0.1):\n",
|
210 |
+
" n = calibration_labels.shape[0]\n",
|
211 |
+
" cal_scores = 1 - calibration_probs[np.arange(calibration_probs.shape[0]), calibration_labels]\n",
|
212 |
+
" # Get the score quantile\n",
|
213 |
+
"\n",
|
214 |
+
" q_level = np.ceil((n + 1) * (1 - alpha)) / n\n",
|
215 |
+
" qhat = np.quantile(cal_scores, q_level, method='higher')\n",
|
216 |
+
"\n",
|
217 |
+
" prediction_sets = probs >= (1 - qhat)\n",
|
218 |
+
" return prediction_sets\n",
|
219 |
+
"\n",
|
220 |
+
"def aps_prediction_set(calibration_probs: NDArray, probs: NDArray, calibration_labels: NDArray, alpha = 0.1):\n",
|
221 |
+
" # Get scores. calib_X.shape[0] == calib_Y.shape[0] == n\n",
|
222 |
+
" n = calibration_labels.shape[0]\n",
|
223 |
+
" cal_order = calibration_probs.argsort(1)[:,::-1]\n",
|
224 |
+
" # cal_sum = cal_probs[np.arange(n)[:, None], cal_pi].cumsum(axis=1)\n",
|
225 |
+
" cal_sum = np.take_along_axis(calibration_probs, cal_order, axis=1).cumsum(axis=1)\n",
|
226 |
+
" cal_scores = np.take_along_axis(cal_sum, cal_order.argsort(axis=1), axis=1)[range(n),calibration_labels]\n",
|
227 |
+
"\n",
|
228 |
+
" # Get the score quantile\n",
|
229 |
+
" q_level = np.ceil((n + 1) * (1 - alpha)) / n\n",
|
230 |
+
" qhat = np.quantile(cal_scores, q_level, method='higher')\n",
|
231 |
+
"\n",
|
232 |
+
" # Deploy (output=list of length n, each element is tensor of classes)\n",
|
233 |
+
" test_order = probs.argsort(1)[:,::-1]\n",
|
234 |
+
" test_sum = np.take_along_axis(probs,test_order,axis=1).cumsum(axis=1)\n",
|
235 |
+
" prediction_sets = np.take_along_axis(test_sum <= qhat, test_order.argsort(axis=1), axis=1)\n",
|
236 |
+
" return prediction_sets\n",
|
237 |
+
"\n",
|
238 |
+
"def raps_prediction_set(calibration_probs: NDArray, test_probs: NDArray, calibration_labels: NDArray, alpha = 0.1, lam_reg=0.01, k_reg = 5, disallow_zero_sets = False, rand = True):\n",
|
239 |
+
" probs = np.concatenate([calibration_probs, test_probs], axis=0)\n",
|
240 |
+
" k_reg = min(k_reg, probs.shape[1] - 1)\n",
|
241 |
+
" reg_vec = np.array(k_reg * [0,] + (probs.shape[1] - k_reg) * [lam_reg,])[None, :]\n",
|
242 |
+
"\n",
|
243 |
+
" n = calibration_labels.shape[0]\n",
|
244 |
+
" cal_order = calibration_probs.argsort(axis=1)[:,::-1]\n",
|
245 |
+
" cal_sort = np.take_along_axis(calibration_probs, cal_order, axis=1)\n",
|
246 |
+
" cal_sort_reg = cal_sort + reg_vec\n",
|
247 |
+
" cal_true_labels = np.where(cal_order == calibration_labels[:,None])[1]\n",
|
248 |
+
" cal_scores = cal_sort_reg.cumsum(axis=1)[np.arange(n), cal_true_labels] - np.random.rand(n) * cal_sort_reg[np.arange(n), cal_true_labels]\n",
|
249 |
+
"\n",
|
250 |
+
" # Get the score quantile\n",
|
251 |
+
" q_level = np.ceil((n + 1) * (1 - alpha)) / n\n",
|
252 |
+
" qhat = np.quantile(cal_scores, q_level, method='higher')\n",
|
253 |
+
"\n",
|
254 |
+
" n_test = test_probs.shape[0]\n",
|
255 |
+
" test_order = test_probs.argsort(1)[:,::-1]\n",
|
256 |
+
" test_sort = np.take_along_axis(test_probs, test_order, axis=1)\n",
|
257 |
+
" test_sort_reg = test_sort + reg_vec\n",
|
258 |
+
" test_srt_reg_cumsum = test_sort_reg.cumsum(axis=1)\n",
|
259 |
+
" indicators = (test_srt_reg_cumsum - np.random.rand(n_test, 1) * test_sort_reg) <= qhat if rand else test_srt_reg_cumsum - test_sort_reg <= qhat\n",
|
260 |
+
"\n",
|
261 |
+
" if disallow_zero_sets: indicators[:,0] = True\n",
|
262 |
+
" prediction_sets = np.take_along_axis(indicators, test_order.argsort(axis=1), axis=1)\n",
|
263 |
+
" return prediction_sets\n",
|
264 |
+
"\n",
|
265 |
+
"def accuracy(y_true, y_pred):\n",
|
266 |
+
" return np.mean(y_true == y_pred)\n",
|
267 |
+
"\n",
|
268 |
+
"def set_size(pred_set):\n",
|
269 |
+
" return np.mean([np.sum(ps) for ps in pred_set])\n",
|
270 |
+
"\n",
|
271 |
+
"def coverage_rate(y_true, pred_set):\n",
|
272 |
+
" return pred_set[np.arange(pred_set.shape[0]), y_true].mean()"
|
273 |
+
],
|
274 |
+
"metadata": {
|
275 |
+
"id": "evNphyC0kAJx"
|
276 |
+
},
|
277 |
+
"execution_count": null,
|
278 |
+
"outputs": []
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"cell_type": "markdown",
|
282 |
+
"metadata": {
|
283 |
+
"id": "C1VFdL01dffC"
|
284 |
+
},
|
285 |
+
"source": [
|
286 |
+
"## Eye Movement"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "code",
|
291 |
+
"execution_count": null,
|
292 |
+
"metadata": {
|
293 |
+
"id": "gQYXkdVuFnNX"
|
294 |
+
},
|
295 |
+
"outputs": [],
|
296 |
+
"source": [
|
297 |
+
"import numpy as np\n",
|
298 |
+
"import torch\n",
|
299 |
+
"import openml\n",
|
300 |
+
"from tabicl import TabICLClassifier\n",
|
301 |
+
"from sklearn.model_selection import train_test_split\n",
|
302 |
+
"from sklearn.metrics import accuracy_score, roc_auc_score"
|
303 |
+
]
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"cell_type": "code",
|
307 |
+
"execution_count": null,
|
308 |
+
"metadata": {
|
309 |
+
"id": "F3ZdlqQUFzdV"
|
310 |
+
},
|
311 |
+
"outputs": [],
|
312 |
+
"source": [
|
313 |
+
"dataset = openml.datasets.get_dataset(1044) # or 31 or 40688\n",
|
314 |
+
"\n",
|
315 |
+
"X, y, _, _ = dataset.get_data(\n",
|
316 |
+
" dataset_format=\"dataframe\", target=dataset.default_target_attribute)\n",
|
317 |
+
"\n",
|
318 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
|
319 |
+
]
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"cell_type": "code",
|
323 |
+
"execution_count": null,
|
324 |
+
"metadata": {
|
325 |
+
"colab": {
|
326 |
+
"base_uri": "https://localhost:8080/"
|
327 |
+
},
|
328 |
+
"id": "yM1CUt2-LahM",
|
329 |
+
"outputId": "c5502c00-9642-420e-d558-9e31fea40212"
|
330 |
+
},
|
331 |
+
"outputs": [
|
332 |
+
{
|
333 |
+
"name": "stdout",
|
334 |
+
"output_type": "stream",
|
335 |
+
"text": [
|
336 |
+
"Using device: cuda\n"
|
337 |
+
]
|
338 |
+
}
|
339 |
+
],
|
340 |
+
"source": [
|
341 |
+
"device = \"cuda\" if torch.cuda.is_available() else (\n",
|
342 |
+
" \"mps\" if getattr(torch.backends, \"mps\", None) and torch.backends.mps.is_available() else \"cpu\"\n",
|
343 |
+
")\n",
|
344 |
+
"print(\"Using device:\", device)"
|
345 |
+
]
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"cell_type": "code",
|
349 |
+
"execution_count": null,
|
350 |
+
"metadata": {
|
351 |
+
"id": "gP-R0-oRFPg0"
|
352 |
+
},
|
353 |
+
"outputs": [],
|
354 |
+
"source": [
|
355 |
+
"clf = TabICLClassifier(device=device)\n",
|
356 |
+
"clf.fit(X_train, y_train) # this is cheap\n",
|
357 |
+
"proba = clf.predict_proba(X_test) # in-context learning happens here"
|
358 |
+
]
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"cell_type": "code",
|
362 |
+
"execution_count": null,
|
363 |
+
"metadata": {
|
364 |
+
"colab": {
|
365 |
+
"base_uri": "https://localhost:8080/"
|
366 |
+
},
|
367 |
+
"id": "m4fSOHNOLE3_",
|
368 |
+
"outputId": "8925965e-146b-4474-c87f-dcf19579b760"
|
369 |
+
},
|
370 |
+
"outputs": [
|
371 |
+
{
|
372 |
+
"name": "stdout",
|
373 |
+
"output_type": "stream",
|
374 |
+
"text": [
|
375 |
+
"ROC AUC: 0.8958693234799394\n",
|
376 |
+
"Accuracy: 0.7340036563071298\n"
|
377 |
+
]
|
378 |
+
}
|
379 |
+
],
|
380 |
+
"source": [
|
381 |
+
"print(\"ROC AUC:\", roc_auc_score(y_test.to_numpy(dtype=int), proba, multi_class='ovo'))\n",
|
382 |
+
"y = np.argmax(proba, axis=1)\n",
|
383 |
+
"y_pred = clf.y_encoder_.inverse_transform(y)\n",
|
384 |
+
"print(\"Accuracy:\", accuracy_score(y_test, y_pred))"
|
385 |
+
]
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"cell_type": "markdown",
|
389 |
+
"metadata": {
|
390 |
+
"id": "gfQvbD9BdqJC"
|
391 |
+
},
|
392 |
+
"source": [
|
393 |
+
"## Rain in Autralia"
|
394 |
+
]
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"cell_type": "code",
|
398 |
+
"execution_count": null,
|
399 |
+
"metadata": {
|
400 |
+
"colab": {
|
401 |
+
"base_uri": "https://localhost:8080/",
|
402 |
+
"height": 332
|
403 |
+
},
|
404 |
+
"id": "2us2QwSIdryV",
|
405 |
+
"outputId": "ebc49be5-9dbf-4c8b-ed92-ed16194d20e2"
|
406 |
+
},
|
407 |
+
"outputs": [
|
408 |
+
{
|
409 |
+
"name": "stdout",
|
410 |
+
"output_type": "stream",
|
411 |
+
"text": [
|
412 |
+
"Using device: cuda\n",
|
413 |
+
"C_train: (93094, 6) object\n",
|
414 |
+
"X_train: (93094, 18) object\n",
|
415 |
+
"X_test : (29092, 18) object\n",
|
416 |
+
"y_train: (93094,) int64\n",
|
417 |
+
"y_test: (29092,) int64\n",
|
418 |
+
"y_test unique: [0 1 2]\n"
|
419 |
+
]
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"ename": "AttributeError",
|
423 |
+
"evalue": "'numpy.ndarray' object has no attribute 'to_numpy'",
|
424 |
+
"output_type": "error",
|
425 |
+
"traceback": [
|
426 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
427 |
+
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
428 |
+
"\u001b[0;32m/tmp/ipython-input-595776624.py\u001b[0m in \u001b[0;36m<cell line: 0>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0mproba\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpipe\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict_proba\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# in-context learning happens here\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 59\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"ROC AUC:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mroc_auc_score\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_numpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mproba\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmulti_class\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'ovo'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 60\u001b[0m \u001b[0my_pred\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mclf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Accuracy:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maccuracy_score\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
429 |
+
"\u001b[0;31mAttributeError\u001b[0m: 'numpy.ndarray' object has no attribute 'to_numpy'"
|
430 |
+
]
|
431 |
+
}
|
432 |
+
],
|
433 |
+
"source": [
|
434 |
+
"from typing import Optional\n",
|
435 |
+
"import os, json\n",
|
436 |
+
"import numpy as np\n",
|
437 |
+
"import pandas as pd\n",
|
438 |
+
"import torch\n",
|
439 |
+
"from skrub import TableVectorizer\n",
|
440 |
+
"from tabicl import TabICLClassifier\n",
|
441 |
+
"from sklearn.impute import SimpleImputer\n",
|
442 |
+
"from sklearn.pipeline import make_pipeline\n",
|
443 |
+
"from sklearn.preprocessing import OrdinalEncoder\n",
|
444 |
+
"from sklearn.metrics import accuracy_score, roc_auc_score\n",
|
445 |
+
"\n",
|
446 |
+
"DATA_DIR = '/content/MyDrive/MyDrive/Datasets/Rain_in_Australia'\n",
|
447 |
+
"\n",
|
448 |
+
"device = \"cuda\" if torch.cuda.is_available() else (\n",
|
449 |
+
" \"mps\" if getattr(torch.backends, \"mps\", None) and torch.backends.mps.is_available() else \"cpu\"\n",
|
450 |
+
")\n",
|
451 |
+
"print(\"Using device:\", device)\n",
|
452 |
+
"\n",
|
453 |
+
"def load(name) -> Optional[np.ndarray]:\n",
|
454 |
+
" p = os.path.join(DATA_DIR, name)\n",
|
455 |
+
" return np.load(p, allow_pickle=True) if os.path.exists(p) else None\n",
|
456 |
+
"\n",
|
457 |
+
"# ---- load arrays ----\n",
|
458 |
+
"C_train, N_train, y_train = load('C_train.npy'), load('N_train.npy'), load('y_train.npy')\n",
|
459 |
+
"C_val, N_val, y_val = load('C_val.npy'), load('N_val.npy'), load('y_val.npy')\n",
|
460 |
+
"C_test, N_test, y_test = load('C_test.npy'), load('N_test.npy'), load('y_test.npy')\n",
|
461 |
+
"\n",
|
462 |
+
"print(\"C_train:\", C_train.shape, C_train.dtype)\n",
|
463 |
+
"# ---- build X by concatenating [C | N] ----\n",
|
464 |
+
"def concat_features(C_part, N_part):\n",
|
465 |
+
" parts = [p for p in (C_part, N_part) if p is not None]\n",
|
466 |
+
" if not parts:\n",
|
467 |
+
" raise ValueError(\"No features found (need at least C_* or N_*).\")\n",
|
468 |
+
" return np.concatenate(parts, axis=1) if len(parts) > 1 else parts[0]\n",
|
469 |
+
"\n",
|
470 |
+
"X_train = concat_features(C_train, N_train)\n",
|
471 |
+
"X_val = concat_features(C_val, N_val) if (C_val is not None or N_val is not None) else None\n",
|
472 |
+
"X_test = concat_features(C_test, N_test)\n",
|
473 |
+
"\n",
|
474 |
+
"print(\"X_train:\", X_train.shape, X_train.dtype)\n",
|
475 |
+
"print(\"X_test :\", X_test.shape, X_test.dtype)\n",
|
476 |
+
"print(\"y_train:\", y_train.shape, y_train.dtype)\n",
|
477 |
+
"print(\"y_test:\", y_test.shape, y_test.dtype)\n",
|
478 |
+
"print(\"y_test unique:\", np.unique(y_test))\n",
|
479 |
+
"\n",
|
480 |
+
"X_train = pd.DataFrame(X_train)\n",
|
481 |
+
"X_test = pd.DataFrame(X_test)\n",
|
482 |
+
"\n",
|
483 |
+
"pipe = make_pipeline(\n",
|
484 |
+
" TableVectorizer(), # Automatically handles various data types\n",
|
485 |
+
" TabICLClassifier(device=device)\n",
|
486 |
+
")\n",
|
487 |
+
"# pipe = TabICLClassifier(device=device)\n",
|
488 |
+
"\n",
|
489 |
+
"pipe.fit(X_train, y_train) # this is cheap\n",
|
490 |
+
"proba = pipe.predict_proba(X_test) # in-context learning happens here\n",
|
491 |
+
"print(\"ROC AUC:\", roc_auc_score(y_test, proba, multi_class='ovo'))\n",
|
492 |
+
"y_pred = pipe.predict(X_test)\n",
|
493 |
+
"print(\"Accuracy:\", accuracy_score(y_test, y_pred))"
|
494 |
+
]
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"cell_type": "code",
|
498 |
+
"execution_count": null,
|
499 |
+
"metadata": {
|
500 |
+
"colab": {
|
501 |
+
"base_uri": "https://localhost:8080/"
|
502 |
+
},
|
503 |
+
"id": "uWOT-zrmkUir",
|
504 |
+
"outputId": "d7efdba9-c5ce-4de8-8b51-ff2d404b1c13"
|
505 |
+
},
|
506 |
+
"outputs": [
|
507 |
+
{
|
508 |
+
"name": "stdout",
|
509 |
+
"output_type": "stream",
|
510 |
+
"text": [
|
511 |
+
"ROC AUC: 0.8840392885541616\n",
|
512 |
+
"Accuracy: 0.8509212154544205\n"
|
513 |
+
]
|
514 |
+
}
|
515 |
+
],
|
516 |
+
"source": [
|
517 |
+
"print(\"ROC AUC:\", roc_auc_score(y_test, proba, multi_class='ovo'))\n",
|
518 |
+
"y = np.argmax(proba, axis=1)\n",
|
519 |
+
"y_pred = pipe.y_encoder_.inverse_transform(y)\n",
|
520 |
+
"print(\"Accuracy:\", accuracy_score(y_test, y_pred))"
|
521 |
+
]
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"cell_type": "code",
|
525 |
+
"execution_count": null,
|
526 |
+
"metadata": {
|
527 |
+
"id": "yuukqVGooxwJ"
|
528 |
+
},
|
529 |
+
"outputs": [],
|
530 |
+
"source": [
|
531 |
+
"print(\"ROC AUC:\", roc_auc_score(y_test, proba, multi_class='ovr'))\n",
|
532 |
+
"y = np.argmax(proba, axis=1)\n",
|
533 |
+
"y_pred = pipe.y_encoder_.inverse_transform(y)\n",
|
534 |
+
"print(\"Accuracy:\", accuracy_score(y_test, y_pred))"
|
535 |
+
]
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"cell_type": "markdown",
|
539 |
+
"metadata": {
|
540 |
+
"id": "MupH1gZPiPph"
|
541 |
+
},
|
542 |
+
"source": [
|
543 |
+
"## Banknote auth"
|
544 |
+
]
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"cell_type": "code",
|
548 |
+
"execution_count": null,
|
549 |
+
"metadata": {
|
550 |
+
"colab": {
|
551 |
+
"base_uri": "https://localhost:8080/"
|
552 |
+
},
|
553 |
+
"id": "FZmc0osUiPXr",
|
554 |
+
"outputId": "ef61624e-08d6-4d6e-f8d7-829c25ef3a7b"
|
555 |
+
},
|
556 |
+
"outputs": [
|
557 |
+
{
|
558 |
+
"output_type": "stream",
|
559 |
+
"name": "stdout",
|
560 |
+
"text": [
|
561 |
+
"Using device: cuda\n",
|
562 |
+
"X_train: (877, 4) float64\n",
|
563 |
+
"X_test : (275, 4) float64\n",
|
564 |
+
"y_train: (877,) int64\n",
|
565 |
+
"y_test: (275,) int64\n",
|
566 |
+
"y_test unique: [0 1]\n"
|
567 |
+
]
|
568 |
+
}
|
569 |
+
],
|
570 |
+
"source": [
|
571 |
+
"DATA_DIR = '/content/MyDrive/MyDrive/Datasets/banknote_authentication'\n",
|
572 |
+
"\n",
|
573 |
+
"device = \"cuda\" if torch.cuda.is_available() else (\n",
|
574 |
+
" \"mps\" if getattr(torch.backends, \"mps\", None) and torch.backends.mps.is_available() else \"cpu\"\n",
|
575 |
+
")\n",
|
576 |
+
"print(\"Using device:\", device)\n",
|
577 |
+
"\n",
|
578 |
+
"def load(name) -> Optional[np.ndarray]:\n",
|
579 |
+
" p = os.path.join(DATA_DIR, name)\n",
|
580 |
+
" return np.load(p, allow_pickle=True) if os.path.exists(p) else None\n",
|
581 |
+
"\n",
|
582 |
+
"# ---- load arrays ----\n",
|
583 |
+
"N_train, y_train = load('N_train.npy'), load('y_train.npy')\n",
|
584 |
+
"N_val, y_val = load('N_val.npy'), load('y_val.npy')\n",
|
585 |
+
"N_test, y_test = load('N_test.npy'), load('y_test.npy')\n",
|
586 |
+
"\n",
|
587 |
+
"X_train = N_train\n",
|
588 |
+
"X_val = N_val\n",
|
589 |
+
"X_test = N_test\n",
|
590 |
+
"\n",
|
591 |
+
"print(\"X_train:\", X_train.shape, X_train.dtype)\n",
|
592 |
+
"print(\"X_test :\", X_test.shape, X_test.dtype)\n",
|
593 |
+
"print(\"y_train:\", y_train.shape, y_train.dtype)\n",
|
594 |
+
"print(\"y_test:\", y_test.shape, y_test.dtype)\n",
|
595 |
+
"print(\"y_test unique:\", np.unique(y_test))\n",
|
596 |
+
"\n",
|
597 |
+
"X_train = pd.DataFrame(X_train)\n",
|
598 |
+
"X_test = pd.DataFrame(X_test)\n",
|
599 |
+
"\n",
|
600 |
+
"# pipe = make_pipeline(\n",
|
601 |
+
"# TableVectorizer(), # Automatically handles various data types\n",
|
602 |
+
"# TabICLClassifier(device=device)\n",
|
603 |
+
"# )\n",
|
604 |
+
"pipe = TabICLClassifier(device=device)\n",
|
605 |
+
"\n",
|
606 |
+
"pipe.fit(X_train, y_train) # this is cheap\n",
|
607 |
+
"cal_proba = pipe.predict_proba(X_val) # in-context learning happens here\n",
|
608 |
+
"proba = pipe.predict_proba(X_test) # in-context learning happens here"
|
609 |
+
]
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"cell_type": "code",
|
613 |
+
"source": [
|
614 |
+
"lac_pred_set = lac_prediction_set(cal_proba, proba, y_val)\n",
|
615 |
+
"aps_pred_set = aps_prediction_set(cal_proba, proba, y_val)\n",
|
616 |
+
"raps_pred_set = raps_prediction_set(cal_proba, proba, y_val)"
|
617 |
+
],
|
618 |
+
"metadata": {
|
619 |
+
"id": "vvGP7d7xkpk7"
|
620 |
+
},
|
621 |
+
"execution_count": null,
|
622 |
+
"outputs": []
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"cell_type": "code",
|
626 |
+
"source": [
|
627 |
+
"print(\"ROC AUC:\", roc_auc_score(y_test, proba[:,1]))\n",
|
628 |
+
"y = np.argmax(proba, axis=1)\n",
|
629 |
+
"y_pred = pipe.y_encoder_.inverse_transform(y)\n",
|
630 |
+
"print(\"Accuracy:\", accuracy_score(y_test, y_pred))\n",
|
631 |
+
"print(\"SS (LAC):\", set_size(lac_pred_set))\n",
|
632 |
+
"print(\"SS (APS):\", set_size(aps_pred_set))\n",
|
633 |
+
"print(\"SS (RAPS):\", set_size(raps_pred_set))\n",
|
634 |
+
"print(\"CR (LAC):\", coverage_rate(y_test, lac_pred_set))\n",
|
635 |
+
"print(\"CR (APS):\", coverage_rate(y_test, aps_pred_set))\n",
|
636 |
+
"print(\"CR (RAPS):\", coverage_rate(y_test, raps_pred_set))"
|
637 |
+
],
|
638 |
+
"metadata": {
|
639 |
+
"colab": {
|
640 |
+
"base_uri": "https://localhost:8080/"
|
641 |
+
},
|
642 |
+
"id": "Sp87-tIbkheD",
|
643 |
+
"outputId": "ad366dee-6cbf-4c4c-89b7-7754d1c5ea59"
|
644 |
+
},
|
645 |
+
"execution_count": null,
|
646 |
+
"outputs": [
|
647 |
+
{
|
648 |
+
"output_type": "stream",
|
649 |
+
"name": "stdout",
|
650 |
+
"text": [
|
651 |
+
"ROC AUC: 0.5084913746919533\n",
|
652 |
+
"Accuracy: 0.5563636363636364\n",
|
653 |
+
"SS (LAC): 1.8254545454545454\n",
|
654 |
+
"SS (APS): 2.0\n",
|
655 |
+
"SS (RAPS): 1.8581818181818182\n",
|
656 |
+
"CR (LAC): 0.9236363636363636\n",
|
657 |
+
"CR (APS): 1.0\n",
|
658 |
+
"CR (RAPS): 0.9418181818181818\n"
|
659 |
+
]
|
660 |
+
}
|
661 |
+
]
|
662 |
+
}
|
663 |
+
],
|
664 |
+
"metadata": {
|
665 |
+
"accelerator": "GPU",
|
666 |
+
"colab": {
|
667 |
+
"gpuType": "T4",
|
668 |
+
"provenance": []
|
669 |
+
},
|
670 |
+
"kernelspec": {
|
671 |
+
"display_name": "Python 3",
|
672 |
+
"name": "python3"
|
673 |
+
},
|
674 |
+
"language_info": {
|
675 |
+
"name": "python"
|
676 |
+
}
|
677 |
+
},
|
678 |
+
"nbformat": 4,
|
679 |
+
"nbformat_minor": 0
|
680 |
+
}
|