### 1. Imports and class setup import gradio as gr import os import torch from model import create_effnetb0_model from timeit import default_timer as timer from typing import Tuple, Dict # Setup class names with open("class_names.txt", "r") as f: class_names = [class_name.strip() for class_name in f.readlines()] ## 2. Model and transforms preparation effnetb0, effnetb0_transforms = create_effnetb0_model(num_classes=3) # Load saved weights effnetb0.load_state_dict( torch.load(f="EfficientNet_b0.pth", map_location=torch.device("cpu")) ) ### 3. Predict function def predict(img) -> Tuple[Dict, float]: # Start a timer start_time = timer() # Transform the input image for use with EffNetB0 img = effnetb0_transforms(img).unsqueeze( 0 ) # unsqueeze = add batch dimension on 0th index # Put model into eval mode, make prediction effnetb0.eval() with torch.inference_mode(): # Pass transformed image through the model and turn the prediction logits into probaiblities pred_probs = torch.softmax(effnetb0(img), dim=1) # Create a prediction label and prediction probability dictionary pred_labels_and_probs = { class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names)) } # Calculate pred time end_time = timer() pred_time = round(end_time - start_time, 4) # Return pred dict and pred time return pred_labels_and_probs, pred_time ### 4. Gradio app ### # Create title, description and article title = "EffNet Pneumonia, by Timothy Karani" description = "An EfficientNetB0 model for multiclass pneumonia detection" article = "AN EFFICIENT DEEP LEARNING APPROACH FOR MULTICLASS PNEUMONIA DETECTION IN CHEST X-RAY IMAGES." # Create example list example_list = [["examples/" + example] for example in os.listdir("examples")] # Create the Gradio demo demo = gr.Interface( fn=predict, # maps inputs to outputs inputs=gr.Image(type="pil"), outputs=[ gr.Label(num_top_classes=3, label="Predictions"), gr.Number(label="Prediction time (s)"), ], examples=example_list, title=title, description=description, article=article, ) # Launch the demo! demo.launch()