Spaces:
Running
Running
import torch | |
import torchvision | |
from torch import nn | |
def create_effnetb0_model(num_classes: int = 3, seed: int = 42): | |
"""Creates an EfficientNetB0 Model and Transforms""" | |
# 1. Setup Weights | |
weights = torchvision.models.EfficientNet_B0_Weights.DEFAULT | |
# 2. Get transforms | |
transforms = weights.transforms() | |
# 3. Setup pretrained model | |
model = torchvision.models.efficientnet_b0(weights=weights) | |
# 4 Freeze all layers | |
for param in model.parameters(): | |
param.requires_grad = False | |
# 5. Change classifier head with random seed for reproducability | |
torch.manual_seed(seed) | |
model.classifier = nn.Sequential( | |
nn.Dropout(p=0.2, inplace=True), | |
nn.Linear(in_features=1280, out_features=num_classes, bias=True), | |
) | |
return model, transforms | |