Spaces:
Sleeping
Sleeping
| import torch | |
| import torchvision | |
| from torch import nn | |
| def create_effnetb0_model(num_classes: int = 3, seed: int = 42): | |
| """Creates an EfficientNetB0 Model and Transforms""" | |
| # 1. Setup Weights | |
| weights = torchvision.models.EfficientNet_B0_Weights.DEFAULT | |
| # 2. Get transforms | |
| transforms = weights.transforms() | |
| # 3. Setup pretrained model | |
| model = torchvision.models.efficientnet_b0(weights=weights) | |
| # 4 Freeze all layers | |
| for param in model.parameters(): | |
| param.requires_grad = False | |
| # 5. Change classifier head with random seed for reproducability | |
| torch.manual_seed(seed) | |
| model.classifier = nn.Sequential( | |
| nn.Dropout(p=0.2, inplace=True), | |
| nn.Linear(in_features=1280, out_features=num_classes, bias=True), | |
| ) | |
| return model, transforms | |