Spaces:
Sleeping
Sleeping
Update retriever.py
Browse files- retriever.py +120 -120
retriever.py
CHANGED
|
@@ -1,121 +1,121 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
-
import json
|
| 3 |
-
import sys
|
| 4 |
-
import os
|
| 5 |
-
from collections import defaultdict
|
| 6 |
-
from util.vector_base import EmbeddingFunction, get_or_create_vector_base
|
| 7 |
-
from util.Embeddings import TextEmb3LargeEmbedding
|
| 8 |
-
from langchain_core.documents import Document
|
| 9 |
-
from FlagEmbedding import FlagReranker
|
| 10 |
-
import time
|
| 11 |
-
from bm25s import BM25, tokenize
|
| 12 |
-
import contextlib
|
| 13 |
-
import io
|
| 14 |
-
from tqdm import tqdm
|
| 15 |
-
|
| 16 |
-
def rrf(rankings, k = 60):
|
| 17 |
-
res = 0
|
| 18 |
-
for r in rankings:
|
| 19 |
-
res += 1 / (r + k)
|
| 20 |
-
return res
|
| 21 |
-
|
| 22 |
-
def retriever(requirement, PO, safeguard_vector_store, reranker_model, using_reranker=False, using_BM25=False, using_chroma=True, k=20, if_split_po=True):
|
| 23 |
-
final_result = []
|
| 24 |
-
if not if_split_po:
|
| 25 |
-
final_result = multiretriever(requirement, PO, safeguard_vector_store, reranker_model, using_reranker=using_reranker, using_BM25=using_BM25, using_chroma=using_chroma, k=k)
|
| 26 |
-
else:
|
| 27 |
-
for po in PO:
|
| 28 |
-
po_result = multiretriever(requirement, [po], safeguard_vector_store, reranker_model, using_reranker=using_reranker, using_BM25=using_BM25, using_chroma=using_chroma, k=k)
|
| 29 |
-
for safeguard in po_result:
|
| 30 |
-
final_result.append(safeguard)
|
| 31 |
-
return final_result
|
| 32 |
-
|
| 33 |
-
def multiretriever(requirement, PO, safeguard_vector_store, reranker_model, using_reranker=True, using_BM25=False, using_chroma=True, k=20):
|
| 34 |
-
"""
|
| 35 |
-
requirements_dict: [
|
| 36 |
-
requirement: {
|
| 37 |
-
"PO": [],
|
| 38 |
-
"safeguard": []
|
| 39 |
-
}
|
| 40 |
-
]
|
| 41 |
-
"""
|
| 42 |
-
candidate_safeguards = []
|
| 43 |
-
po_list = [po.lower().rstrip() for po in PO if po]
|
| 44 |
-
if "young users" in po_list and len(po_list) == 1:
|
| 45 |
-
return []
|
| 46 |
-
candidate_safeguards = safeguard_vector_store.get(where={"po": {"$in": po_list}})
|
| 47 |
-
safeguard_dict, safeguard_content = {}, []
|
| 48 |
-
for id, content, metadata in zip(candidate_safeguards['ids'], candidate_safeguards['documents'], candidate_safeguards['metadatas']):
|
| 49 |
-
safeguard_dict[content] = {
|
| 50 |
-
"metadata": metadata,
|
| 51 |
-
"rank": [],
|
| 52 |
-
"rrf_score": 0
|
| 53 |
-
}
|
| 54 |
-
safeguard_content.append(content)
|
| 55 |
-
|
| 56 |
-
# Reranker
|
| 57 |
-
if using_reranker:
|
| 58 |
-
content_pairs, reranking_rank, reranking_results = [], [], []
|
| 59 |
-
for safeguard in safeguard_content:
|
| 60 |
-
content_pairs.append([requirement, safeguard])
|
| 61 |
-
safeguard_rerank_scores = reranker_model.compute_score(content_pairs)
|
| 62 |
-
for content_pair, score in zip(content_pairs, safeguard_rerank_scores):
|
| 63 |
-
reranking_rank.append((content_pair[1], score))
|
| 64 |
-
reranking_results = sorted(reranking_rank, key=lambda x: x[1], reverse=True)
|
| 65 |
-
for safeguard, score in reranking_results:
|
| 66 |
-
safeguard_dict[safeguard]['rank'].append(reranking_results.index((safeguard, score)) + 1)
|
| 67 |
-
|
| 68 |
-
# BM25
|
| 69 |
-
if using_BM25:
|
| 70 |
-
with contextlib.redirect_stdout(io.StringIO()):
|
| 71 |
-
bm25_retriever = BM25(corpus=safeguard_content)
|
| 72 |
-
bm25_retriever.index(tokenize(safeguard_content))
|
| 73 |
-
bm25_results, scores = bm25_retriever.retrieve(tokenize(requirement), k = len(safeguard_content))
|
| 74 |
-
bm25_retrieval_rank = 1
|
| 75 |
-
for safeguard in bm25_results[0]:
|
| 76 |
-
safeguard_dict[safeguard]['rank'].append(bm25_retrieval_rank)
|
| 77 |
-
bm25_retrieval_rank += 1
|
| 78 |
-
|
| 79 |
-
# chroma retrieval
|
| 80 |
-
if using_chroma:
|
| 81 |
-
retrieved_safeguards = safeguard_vector_store.similarity_search_with_score(query=requirement, k=len(candidate_safeguards['ids']), filter={"po": {"$in": po_list}})
|
| 82 |
-
retrieval_rank = 1
|
| 83 |
-
for safeguard in retrieved_safeguards:
|
| 84 |
-
safeguard_dict[safeguard[0].page_content]['rank'].append(retrieval_rank)
|
| 85 |
-
retrieval_rank += 1
|
| 86 |
-
|
| 87 |
-
final_result = []
|
| 88 |
-
for safeguard in safeguard_content:
|
| 89 |
-
safeguard_dict[safeguard]['rrf_score'] = rrf(safeguard_dict[safeguard]['rank'])
|
| 90 |
-
final_result.append((safeguard_dict[safeguard]['rrf_score'], safeguard_dict[safeguard]['metadata']['safeguard_number'], safeguard, safeguard_dict[safeguard]['metadata']['po']))
|
| 91 |
-
final_result.sort(key=lambda x: x[0], reverse=True)
|
| 92 |
-
|
| 93 |
-
# top k
|
| 94 |
-
topk_final_result = final_result[:k]
|
| 95 |
-
|
| 96 |
-
return topk_final_result
|
| 97 |
-
|
| 98 |
-
if __name__=="__main__":
|
| 99 |
-
embeddingmodel = TextEmb3LargeEmbedding(max_qpm=58)
|
| 100 |
-
embedding = EmbeddingFunction(embeddingmodel)
|
| 101 |
-
safeguard_vector_store = get_or_create_vector_base('safeguard_database', embedding)
|
| 102 |
-
reranker_model = FlagReranker(
|
| 103 |
-
'/root/PTR-LLM/tasks/pcf/model/bge-reranker-v2-m3',
|
| 104 |
-
use_fp16=True,
|
| 105 |
-
devices=["cpu"],
|
| 106 |
-
)
|
| 107 |
-
requirement = """
|
| 108 |
-
Data Minimization Consent for incompatible purposes: Require consent for additional use of personal information not reasonably necessary to or incompatible with original purpose disclosure.
|
| 109 |
-
"""
|
| 110 |
-
PO = ["Data Minimization & Purpose Limitation", "Transparency"]
|
| 111 |
-
final_result = retriever(
|
| 112 |
-
requirement,
|
| 113 |
-
PO,
|
| 114 |
-
safeguard_vector_store,
|
| 115 |
-
reranker_model,
|
| 116 |
-
using_reranker=True,
|
| 117 |
-
using_BM25=False,
|
| 118 |
-
using_chroma=True,
|
| 119 |
-
k=10
|
| 120 |
-
)
|
| 121 |
print(final_result)
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import json
|
| 3 |
+
import sys
|
| 4 |
+
import os
|
| 5 |
+
from collections import defaultdict
|
| 6 |
+
from util.vector_base import EmbeddingFunction, get_or_create_vector_base
|
| 7 |
+
from util.Embeddings import TextEmb3LargeEmbedding
|
| 8 |
+
from langchain_core.documents import Document
|
| 9 |
+
from FlagEmbedding import FlagReranker
|
| 10 |
+
import time
|
| 11 |
+
# from bm25s import BM25, tokenize
|
| 12 |
+
import contextlib
|
| 13 |
+
import io
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
|
| 16 |
+
def rrf(rankings, k = 60):
|
| 17 |
+
res = 0
|
| 18 |
+
for r in rankings:
|
| 19 |
+
res += 1 / (r + k)
|
| 20 |
+
return res
|
| 21 |
+
|
| 22 |
+
def retriever(requirement, PO, safeguard_vector_store, reranker_model, using_reranker=False, using_BM25=False, using_chroma=True, k=20, if_split_po=True):
|
| 23 |
+
final_result = []
|
| 24 |
+
if not if_split_po:
|
| 25 |
+
final_result = multiretriever(requirement, PO, safeguard_vector_store, reranker_model, using_reranker=using_reranker, using_BM25=using_BM25, using_chroma=using_chroma, k=k)
|
| 26 |
+
else:
|
| 27 |
+
for po in PO:
|
| 28 |
+
po_result = multiretriever(requirement, [po], safeguard_vector_store, reranker_model, using_reranker=using_reranker, using_BM25=using_BM25, using_chroma=using_chroma, k=k)
|
| 29 |
+
for safeguard in po_result:
|
| 30 |
+
final_result.append(safeguard)
|
| 31 |
+
return final_result
|
| 32 |
+
|
| 33 |
+
def multiretriever(requirement, PO, safeguard_vector_store, reranker_model, using_reranker=True, using_BM25=False, using_chroma=True, k=20):
|
| 34 |
+
"""
|
| 35 |
+
requirements_dict: [
|
| 36 |
+
requirement: {
|
| 37 |
+
"PO": [],
|
| 38 |
+
"safeguard": []
|
| 39 |
+
}
|
| 40 |
+
]
|
| 41 |
+
"""
|
| 42 |
+
candidate_safeguards = []
|
| 43 |
+
po_list = [po.lower().rstrip() for po in PO if po]
|
| 44 |
+
if "young users" in po_list and len(po_list) == 1:
|
| 45 |
+
return []
|
| 46 |
+
candidate_safeguards = safeguard_vector_store.get(where={"po": {"$in": po_list}})
|
| 47 |
+
safeguard_dict, safeguard_content = {}, []
|
| 48 |
+
for id, content, metadata in zip(candidate_safeguards['ids'], candidate_safeguards['documents'], candidate_safeguards['metadatas']):
|
| 49 |
+
safeguard_dict[content] = {
|
| 50 |
+
"metadata": metadata,
|
| 51 |
+
"rank": [],
|
| 52 |
+
"rrf_score": 0
|
| 53 |
+
}
|
| 54 |
+
safeguard_content.append(content)
|
| 55 |
+
|
| 56 |
+
# Reranker
|
| 57 |
+
if using_reranker:
|
| 58 |
+
content_pairs, reranking_rank, reranking_results = [], [], []
|
| 59 |
+
for safeguard in safeguard_content:
|
| 60 |
+
content_pairs.append([requirement, safeguard])
|
| 61 |
+
safeguard_rerank_scores = reranker_model.compute_score(content_pairs)
|
| 62 |
+
for content_pair, score in zip(content_pairs, safeguard_rerank_scores):
|
| 63 |
+
reranking_rank.append((content_pair[1], score))
|
| 64 |
+
reranking_results = sorted(reranking_rank, key=lambda x: x[1], reverse=True)
|
| 65 |
+
for safeguard, score in reranking_results:
|
| 66 |
+
safeguard_dict[safeguard]['rank'].append(reranking_results.index((safeguard, score)) + 1)
|
| 67 |
+
|
| 68 |
+
# BM25
|
| 69 |
+
if using_BM25:
|
| 70 |
+
with contextlib.redirect_stdout(io.StringIO()):
|
| 71 |
+
bm25_retriever = BM25(corpus=safeguard_content)
|
| 72 |
+
bm25_retriever.index(tokenize(safeguard_content))
|
| 73 |
+
bm25_results, scores = bm25_retriever.retrieve(tokenize(requirement), k = len(safeguard_content))
|
| 74 |
+
bm25_retrieval_rank = 1
|
| 75 |
+
for safeguard in bm25_results[0]:
|
| 76 |
+
safeguard_dict[safeguard]['rank'].append(bm25_retrieval_rank)
|
| 77 |
+
bm25_retrieval_rank += 1
|
| 78 |
+
|
| 79 |
+
# chroma retrieval
|
| 80 |
+
if using_chroma:
|
| 81 |
+
retrieved_safeguards = safeguard_vector_store.similarity_search_with_score(query=requirement, k=len(candidate_safeguards['ids']), filter={"po": {"$in": po_list}})
|
| 82 |
+
retrieval_rank = 1
|
| 83 |
+
for safeguard in retrieved_safeguards:
|
| 84 |
+
safeguard_dict[safeguard[0].page_content]['rank'].append(retrieval_rank)
|
| 85 |
+
retrieval_rank += 1
|
| 86 |
+
|
| 87 |
+
final_result = []
|
| 88 |
+
for safeguard in safeguard_content:
|
| 89 |
+
safeguard_dict[safeguard]['rrf_score'] = rrf(safeguard_dict[safeguard]['rank'])
|
| 90 |
+
final_result.append((safeguard_dict[safeguard]['rrf_score'], safeguard_dict[safeguard]['metadata']['safeguard_number'], safeguard, safeguard_dict[safeguard]['metadata']['po']))
|
| 91 |
+
final_result.sort(key=lambda x: x[0], reverse=True)
|
| 92 |
+
|
| 93 |
+
# top k
|
| 94 |
+
topk_final_result = final_result[:k]
|
| 95 |
+
|
| 96 |
+
return topk_final_result
|
| 97 |
+
|
| 98 |
+
if __name__=="__main__":
|
| 99 |
+
embeddingmodel = TextEmb3LargeEmbedding(max_qpm=58)
|
| 100 |
+
embedding = EmbeddingFunction(embeddingmodel)
|
| 101 |
+
safeguard_vector_store = get_or_create_vector_base('safeguard_database', embedding)
|
| 102 |
+
reranker_model = FlagReranker(
|
| 103 |
+
'/root/PTR-LLM/tasks/pcf/model/bge-reranker-v2-m3',
|
| 104 |
+
use_fp16=True,
|
| 105 |
+
devices=["cpu"],
|
| 106 |
+
)
|
| 107 |
+
requirement = """
|
| 108 |
+
Data Minimization Consent for incompatible purposes: Require consent for additional use of personal information not reasonably necessary to or incompatible with original purpose disclosure.
|
| 109 |
+
"""
|
| 110 |
+
PO = ["Data Minimization & Purpose Limitation", "Transparency"]
|
| 111 |
+
final_result = retriever(
|
| 112 |
+
requirement,
|
| 113 |
+
PO,
|
| 114 |
+
safeguard_vector_store,
|
| 115 |
+
reranker_model,
|
| 116 |
+
using_reranker=True,
|
| 117 |
+
using_BM25=False,
|
| 118 |
+
using_chroma=True,
|
| 119 |
+
k=10
|
| 120 |
+
)
|
| 121 |
print(final_result)
|