File size: 9,172 Bytes
3440723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52fabd3
3440723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03b1bd4
 
226f674
03b1bd4
 
3440723
 
 
 
 
 
 
 
 
 
03b1bd4
3440723
 
 
 
 
 
 
 
9108f2b
 
 
 
 
3440723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52fabd3
 
 
 
3440723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afc7f28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
sys.path.append(os.path.abspath("projects/UNO"))

import dataclasses
import gradio as gr
import spaces
import json
import torch
from huggingface_hub import hf_hub_download
from pathlib import Path

from uno.flux.pipeline import UNOPipeline


def get_examples(examples_dir: str = "assets/examples") -> list:
    examples = Path(examples_dir)
    ans = []
    for example in examples.iterdir():
        if not example.is_dir():
            continue
        with open(example / "config.json") as f:
            example_dict = json.load(f)
  
        
        example_list = []

        example_list.append(example_dict["prompt"])  # prompt

        for key in ["image_ref1", "image_ref2"]:
            if key in example_dict:
                example_list.append(str(example / example_dict[key]))
            else:
                example_list.append(None)

        example_list.append(example_dict.get("width", 768))
        example_list.append(example_dict.get("height", 768))
        
        example_list.append(example_dict["seed"])

        example_list.append(str(example / example_dict["image_result_uno"]))
        example_list.append(str(example / example_dict["image_result"]))

        ans.append(example_list)
    return ans


with open("assets/logo.svg", "r", encoding="utf-8") as svg_file:
    logo_content = svg_file.read()
title = f"""
<div style="display: flex; align-items: center; justify-content: center;">
    <span style="transform: scale(0.7);margin-right: -5px;">{logo_content}</span>  
    <span style="font-size: 1.8em;margin-left: -10px;font-weight: bold; font-family: Gill Sans;">UMO (based on UNO) by UXO Team</span>
</div>
""".strip()

badges_text = r"""
<div style="text-align: center; display: flex; justify-content: center; gap: 5px;">
<a href="https://github.com/bytedance/UMO"><img alt="Build" src="https://img.shields.io/github/stars/bytedance/UMO"></a> 
<a href="https://bytedance.github.io/UMO/"><img alt="Build" src="https://img.shields.io/badge/Project%20Page-UMO-blue"></a> 
<a href="https://huggingface.co/bytedance-research/UMO"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Model&color=green"></a>
<a href="https://arxiv.org/abs/2509.06818"><img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-UMO-b31b1b.svg"></a>
<a href="https://huggingface.co/spaces/bytedance-research/UMO_UNO"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Demo&message=UMO-UNO&color=orange"></a>
<a href="https://huggingface.co/spaces/bytedance-research/UMO_OmniGen2"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Demo&message=UMO-OmniGen2&color=orange"></a>
</div>
""".strip()

tips = """
📌 ***UMO*** is a **U**nified **M**ulti-identity **O**ptimization framework to *boost the multi-ID fidelity and mitigate confusion* for image customization model, and the latest addition to the UXO family (<a href='https://github.com/bytedance/UMO' target='_blank'> UMO</a>, <a href='https://github.com/bytedance/USO' target='_blank'> USO</a> and <a href='https://github.com/bytedance/UNO' target='_blank'> UNO</a>).

🎨 UMO in the demo is trained based on <a href='https://github.com/bytedance/UNO' target='_blank'> UNO</a>.

💡 We provide step-by-step instructions in our <a href='https://github.com/bytedance/UMO' target='_blank'> Github Repo</a>. Additionally, try the examples and comparison provided below the demo to quickly get familiar with UMO and spark your creativity!

⚡️ ***Tips for UMO based on UNO***

- Using description prompt instead of instruction one.
- Using resolution 768~1024 instead of 512.
- When reference identities are more than 2, the based model UNO becomes unstable.
""".strip()

article = """
```bibtex
@article{cheng2025umo,
  title={UMO: Scaling Multi-Identity Consistency for Image Customization via Matching Reward},
  author={Cheng, Yufeng and Wu, Wenxu and Wu, Shaojin and Huang, Mengqi and Ding, Fei and He, Qian},
  journal={arXiv preprint arXiv:2509.06818},
  year={2025}
}
```
""".strip()

star = f"""
If UMO is helpful, please help to ⭐ our <a href='https://github.com/bytedance/UMO' target='_blank'> Github Repo</a> or cite our paper. Thanks a lot!
{article}
"""


def create_demo(
    model_type: str,
    device: str = "cuda" if torch.cuda.is_available() else "cpu",
    offload: bool = False,
    lora_path: str = None,
):

    # create pipeline
    pipeline = UNOPipeline(model_type, device, offload, only_lora=True, lora_rank=512)

    lora_path = hf_hub_download("bytedance-research/UMO", "UMO_UNO.safetensors") if lora_path is None else lora_path
    pipeline.load_ckpt(lora_path)
    pipeline.model.to(device)
    
    pipeline.gradio_generate = spaces.GPU(duratioin=120)(pipeline.gradio_generate)

    # gradio
    with gr.Blocks() as demo:
        gr.Markdown(title)
        gr.Markdown(badges_text)
        gr.Markdown(tips)

        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt", value="")
                with gr.Row():
                    image_prompt1 = gr.Image(label="Ref Img1", visible=True, interactive=True, type="pil")
                    image_prompt2 = gr.Image(label="Ref Img2", visible=True, interactive=True, type="pil")
                    image_prompt3 = gr.Image(label="Ref Img3", visible=True, interactive=True, type="pil")
                    image_prompt4 = gr.Image(label="Ref Img4", visible=True, interactive=True, type="pil")

                with gr.Row():
                    with gr.Column():
                        width = gr.Slider(512, 2048, 768, step=16, label="Gneration Width")
                        height = gr.Slider(512, 2048, 768, step=16, label="Gneration Height")

                with gr.Accordion("Advanced Options", open=False):
                    with gr.Row():
                        num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
                        guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True)
                        seed = gr.Number(-1, label="Seed (-1 for random)")

                generate_btn = gr.Button("Generate")

            with gr.Column():
                output_image = gr.Image(label="Generated Image")

                with gr.Accordion("Examples Comparison with UNO", open=False):
                    output_image_uno = gr.Image(label="Generated Image (UNO)")
                
                download_btn = gr.File(label="Download full-resolution", type="filepath", interactive=False)

            inputs = [
                prompt, width, height, guidance, num_steps,
                seed, image_prompt1, image_prompt2, image_prompt3, image_prompt4
            ]
            generate_btn.click(
                fn=pipeline.gradio_generate,
                inputs=inputs,
                outputs=[output_image, download_btn],
            )
        
        gr.Markdown(star)

        examples = get_examples("./assets/examples/UNO")

        gr.Examples(
            examples=examples,
            inputs=[
                prompt,
                image_prompt1, image_prompt2,
                width, height,
                seed, output_image_uno, output_image
            ],
            label="We provide examples for academic research. The vast majority of images used in this demo are either generated or from open-source datasets. If you have any concerns, please contact us, and we will promptly remove any inappropriate content.",
        )

    return demo

if __name__ == "__main__":
    from typing import Literal

    from transformers import HfArgumentParser

    @dataclasses.dataclass
    class AppArgs:
        name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev"
        device: Literal["cuda", "cpu"] = (
            "cuda" if torch.cuda.is_available() \
            else "mps" if torch.backends.mps.is_available() \
            else "cpu"
        )
        offload: bool = dataclasses.field(
            default=False,
            metadata={"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."}
        )
        port: int = 7860
        server_name: str | None = None
        lora_path: str | None = None

    parser = HfArgumentParser([AppArgs])
    args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs]
    args = args_tuple[0]

    demo = create_demo(args.name, args.device, args.offload, args.lora_path)
    demo.launch(server_port=args.port, server_name=args.server_name, ssr_mode=False)