Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,172 Bytes
3440723 52fabd3 3440723 03b1bd4 226f674 03b1bd4 3440723 03b1bd4 3440723 9108f2b 3440723 52fabd3 3440723 afc7f28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
sys.path.append(os.path.abspath("projects/UNO"))
import dataclasses
import gradio as gr
import spaces
import json
import torch
from huggingface_hub import hf_hub_download
from pathlib import Path
from uno.flux.pipeline import UNOPipeline
def get_examples(examples_dir: str = "assets/examples") -> list:
examples = Path(examples_dir)
ans = []
for example in examples.iterdir():
if not example.is_dir():
continue
with open(example / "config.json") as f:
example_dict = json.load(f)
example_list = []
example_list.append(example_dict["prompt"]) # prompt
for key in ["image_ref1", "image_ref2"]:
if key in example_dict:
example_list.append(str(example / example_dict[key]))
else:
example_list.append(None)
example_list.append(example_dict.get("width", 768))
example_list.append(example_dict.get("height", 768))
example_list.append(example_dict["seed"])
example_list.append(str(example / example_dict["image_result_uno"]))
example_list.append(str(example / example_dict["image_result"]))
ans.append(example_list)
return ans
with open("assets/logo.svg", "r", encoding="utf-8") as svg_file:
logo_content = svg_file.read()
title = f"""
<div style="display: flex; align-items: center; justify-content: center;">
<span style="transform: scale(0.7);margin-right: -5px;">{logo_content}</span>
<span style="font-size: 1.8em;margin-left: -10px;font-weight: bold; font-family: Gill Sans;">UMO (based on UNO) by UXO Team</span>
</div>
""".strip()
badges_text = r"""
<div style="text-align: center; display: flex; justify-content: center; gap: 5px;">
<a href="https://github.com/bytedance/UMO"><img alt="Build" src="https://img.shields.io/github/stars/bytedance/UMO"></a>
<a href="https://bytedance.github.io/UMO/"><img alt="Build" src="https://img.shields.io/badge/Project%20Page-UMO-blue"></a>
<a href="https://huggingface.co/bytedance-research/UMO"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Model&color=green"></a>
<a href="https://arxiv.org/abs/2509.06818"><img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-UMO-b31b1b.svg"></a>
<a href="https://huggingface.co/spaces/bytedance-research/UMO_UNO"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Demo&message=UMO-UNO&color=orange"></a>
<a href="https://huggingface.co/spaces/bytedance-research/UMO_OmniGen2"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Demo&message=UMO-OmniGen2&color=orange"></a>
</div>
""".strip()
tips = """
📌 ***UMO*** is a **U**nified **M**ulti-identity **O**ptimization framework to *boost the multi-ID fidelity and mitigate confusion* for image customization model, and the latest addition to the UXO family (<a href='https://github.com/bytedance/UMO' target='_blank'> UMO</a>, <a href='https://github.com/bytedance/USO' target='_blank'> USO</a> and <a href='https://github.com/bytedance/UNO' target='_blank'> UNO</a>).
🎨 UMO in the demo is trained based on <a href='https://github.com/bytedance/UNO' target='_blank'> UNO</a>.
💡 We provide step-by-step instructions in our <a href='https://github.com/bytedance/UMO' target='_blank'> Github Repo</a>. Additionally, try the examples and comparison provided below the demo to quickly get familiar with UMO and spark your creativity!
⚡️ ***Tips for UMO based on UNO***
- Using description prompt instead of instruction one.
- Using resolution 768~1024 instead of 512.
- When reference identities are more than 2, the based model UNO becomes unstable.
""".strip()
article = """
```bibtex
@article{cheng2025umo,
title={UMO: Scaling Multi-Identity Consistency for Image Customization via Matching Reward},
author={Cheng, Yufeng and Wu, Wenxu and Wu, Shaojin and Huang, Mengqi and Ding, Fei and He, Qian},
journal={arXiv preprint arXiv:2509.06818},
year={2025}
}
```
""".strip()
star = f"""
If UMO is helpful, please help to ⭐ our <a href='https://github.com/bytedance/UMO' target='_blank'> Github Repo</a> or cite our paper. Thanks a lot!
{article}
"""
def create_demo(
model_type: str,
device: str = "cuda" if torch.cuda.is_available() else "cpu",
offload: bool = False,
lora_path: str = None,
):
# create pipeline
pipeline = UNOPipeline(model_type, device, offload, only_lora=True, lora_rank=512)
lora_path = hf_hub_download("bytedance-research/UMO", "UMO_UNO.safetensors") if lora_path is None else lora_path
pipeline.load_ckpt(lora_path)
pipeline.model.to(device)
pipeline.gradio_generate = spaces.GPU(duratioin=120)(pipeline.gradio_generate)
# gradio
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(badges_text)
gr.Markdown(tips)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="")
with gr.Row():
image_prompt1 = gr.Image(label="Ref Img1", visible=True, interactive=True, type="pil")
image_prompt2 = gr.Image(label="Ref Img2", visible=True, interactive=True, type="pil")
image_prompt3 = gr.Image(label="Ref Img3", visible=True, interactive=True, type="pil")
image_prompt4 = gr.Image(label="Ref Img4", visible=True, interactive=True, type="pil")
with gr.Row():
with gr.Column():
width = gr.Slider(512, 2048, 768, step=16, label="Gneration Width")
height = gr.Slider(512, 2048, 768, step=16, label="Gneration Height")
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True)
seed = gr.Number(-1, label="Seed (-1 for random)")
generate_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(label="Generated Image")
with gr.Accordion("Examples Comparison with UNO", open=False):
output_image_uno = gr.Image(label="Generated Image (UNO)")
download_btn = gr.File(label="Download full-resolution", type="filepath", interactive=False)
inputs = [
prompt, width, height, guidance, num_steps,
seed, image_prompt1, image_prompt2, image_prompt3, image_prompt4
]
generate_btn.click(
fn=pipeline.gradio_generate,
inputs=inputs,
outputs=[output_image, download_btn],
)
gr.Markdown(star)
examples = get_examples("./assets/examples/UNO")
gr.Examples(
examples=examples,
inputs=[
prompt,
image_prompt1, image_prompt2,
width, height,
seed, output_image_uno, output_image
],
label="We provide examples for academic research. The vast majority of images used in this demo are either generated or from open-source datasets. If you have any concerns, please contact us, and we will promptly remove any inappropriate content.",
)
return demo
if __name__ == "__main__":
from typing import Literal
from transformers import HfArgumentParser
@dataclasses.dataclass
class AppArgs:
name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev"
device: Literal["cuda", "cpu"] = (
"cuda" if torch.cuda.is_available() \
else "mps" if torch.backends.mps.is_available() \
else "cpu"
)
offload: bool = dataclasses.field(
default=False,
metadata={"help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used."}
)
port: int = 7860
server_name: str | None = None
lora_path: str | None = None
parser = HfArgumentParser([AppArgs])
args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs]
args = args_tuple[0]
demo = create_demo(args.name, args.device, args.offload, args.lora_path)
demo.launch(server_port=args.port, server_name=args.server_name, ssr_mode=False) |