File size: 5,893 Bytes
cf4796c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from typing import Optional

import os
import random
import yaml
import glob
from PIL import Image

import torch

from datasets import load_dataset, concatenate_datasets

from ..pipelines.omnigen2.pipeline_omnigen2 import OmniGen2ImageProcessor

class OmniGen2TestDataset(torch.utils.data.Dataset):
    SYSTEM_PROMPT = "You are a helpful assistant that generates high-quality images based on user instructions."

    def __init__(
        self,
        config_path: str,
        tokenizer,
        use_chat_template: bool,
        max_pixels: Optional[int] = None,
        max_side_length: Optional[int] = None,
        img_scale_num: int = 16,
        align_res: bool = True
    ):
        
        self.max_pixels = max_pixels
        self.max_side_length = max_side_length
        self.img_scale_num = img_scale_num
        self.align_res = align_res

        with open(config_path, "r") as f:
            self.config = yaml.load(f, Loader=yaml.FullLoader)

        self.use_chat_template = use_chat_template
        self.image_processor = OmniGen2ImageProcessor(vae_scale_factor=img_scale_num, do_resize=True)

        data = self._collect_annotations(self.config)

        self.data = data
        self.tokenizer = tokenizer
        
    def _collect_annotations(self, config):
        json_datasets = []
        for data in config['data']:
            data_path, data_type = data['path'], data.get("type", "default")
            if os.path.isdir(data_path):
                jsonl_files = list(glob.glob(os.path.join(data_path, "**/*.jsonl"), recursive=True)) + list(glob.glob(os.path.join(data_path, "**/*.json"), recursive=True))
                json_dataset = load_dataset('json', data_files=jsonl_files, cache_dir=None)['train']
            else:
                data_ext = os.path.splitext(data_path)[-1]
                if data_ext in [".json", ".jsonl"]:
                    json_dataset = load_dataset('json', data_files=data_path, cache_dir=None)['train']
                elif data_ext in [".yml", ".yaml"]:
                    with open(data_path, "r") as f:
                        sub_config = yaml.load(f, Loader=yaml.FullLoader)
                        json_dataset = self._collect_annotations(sub_config)
                else:
                    raise NotImplementedError(
                        f'Unknown data file extension: "{data_ext}". '
                        f"Currently, .json, .jsonl .yml .yaml are supported. "
                        "If you are using a supported format, please set the file extension so that the proper parsing "
                        "routine can be called."
                    )
            json_datasets.append(json_dataset)
        
        json_dataset = concatenate_datasets(json_datasets)
        return json_dataset
    
    def apply_chat_template(self, instruction, system_prompt):
        if self.use_chat_template:
            prompt = [
                {
                    "role": "system",
                    "content": system_prompt,
                },
                {"role": "user", "content": instruction},
            ]
            instruction = self.tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=False)
        return instruction
    
    def process_item(self, data_item):
        assert data_item['instruction'] is not None
        if 'input_images' in data_item and data_item['input_images'] is not None:
            input_images_path = data_item['input_images']
            input_images = []

            for input_image_path in input_images_path:
                input_image = Image.open(input_image_path).convert("RGB")
                input_images.append(input_image)
        else:
            input_images_path, input_images = None, None

        if input_images is not None and len(input_images) == 1 and self.align_res:
            target_img_size = (input_images[0].width, input_images[0].height)
        else:
            target_img_size = data_item["target_img_size"]

        w, h = target_img_size
        cur_pixels = w * h
        ratio = min(1, (self.max_pixels / cur_pixels) ** 0.5)

        target_img_size = (int(w * ratio) // self.img_scale_num * self.img_scale_num, int(h * ratio) // self.img_scale_num * self.img_scale_num)

        data = {
            'task_type': data_item['task_type'],
            'instruction': data_item['instruction'],
            'input_images_path': input_images_path,
            'input_images': input_images,
            'target_img_size': target_img_size,
        }
        return data

    def __getitem__(self, index):
        data_item = self.data[index]
        return self.process_item(data_item)
        
    def __len__(self):
        return len(self.data)

class OmniGen2Collator():
    def __init__(self, tokenizer, max_token_len):
        self.tokenizer = tokenizer
        self.max_token_len = max_token_len

    def __call__(self, batch):
        task_type = [data['task_type'] for data in batch]
        instruction = [data['instruction'] for data in batch]
        input_images_path = [data['input_images_path'] for data in batch]
        input_images = [data['input_images'] for data in batch]
        output_image = [data['output_image'] for data in batch]
        output_image_path = [data['output_image_path'] for data in batch]

        text_inputs = self.tokenizer(
            instruction,
            padding="longest",
            max_length=self.max_token_len,
            truncation=True,
            return_tensors="pt",
        )

        data = {
            "task_type": task_type,
            "text_ids": text_inputs.input_ids,
            "text_mask": text_inputs.attention_mask,
            "input_images": input_images, 
            "input_images_path": input_images_path,
            "output_image": output_image,
            "output_image_path": output_image_path,
        }
        return data