Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,548 Bytes
b59ff27 56fe0df b59ff27 387b7ca b59ff27 56fe0df b59ff27 53d0039 b59ff27 387b7ca b59ff27 0e61e28 b59ff27 eec7f19 b59ff27 eec7f19 b59ff27 56fe0df b59ff27 56fe0df b59ff27 eec7f19 56fe0df eec7f19 b59ff27 150fc3d b59ff27 387b7ca eec7f19 387b7ca b59ff27 56fe0df b59ff27 56fe0df b59ff27 56fe0df b59ff27 56fe0df b59ff27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Copyright (c) VectorSpaceLab and its affiliates. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import dotenv
dotenv.load_dotenv(override=True)
import gradio as gr
import spaces
import argparse
import json
import random
from datetime import datetime
from glob import glob
from typing import Literal
import torch
from torchvision.transforms.functional import to_pil_image, to_tensor
from accelerate import Accelerator
from huggingface_hub import hf_hub_download
from peft import LoraConfig
from safetensors.torch import load_file
from omnigen2.pipelines.omnigen2.pipeline_omnigen2 import OmniGen2Pipeline
from omnigen2.models.transformers.transformer_omnigen2 import OmniGen2Transformer2DModel
from omnigen2.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from omnigen2.schedulers.scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from omnigen2.utils.img_util import create_collage
NEGATIVE_PROMPT = "(((deformed))), blurry, over saturation, bad anatomy, disfigured, poorly drawn face, mutation, mutated, (extra_limb), (ugly), (poorly drawn hands), fused fingers, messy drawing, broken legs censor, censored, censor_bar"
SAVE_DIR = "output/gradio"
pipeline = None
accelerator = None
save_images = False
enable_taylorseer = False
enable_teacache = False
def load_pipeline(accelerator, weight_dtype, args):
pipeline = OmniGen2Pipeline.from_pretrained(
args.model_path,
torch_dtype=weight_dtype,
trust_remote_code=True,
)
pipeline.transformer = OmniGen2Transformer2DModel.from_pretrained(
args.model_path,
subfolder="transformer",
torch_dtype=weight_dtype,
)
lora_path = hf_hub_download("bytedance-research/UMO", "UMO_OmniGen2.safetensors") if args.lora_path is None else args.lora_path
target_modules = ["to_k", "to_q", "to_v", "to_out.0"]
lora_config = LoraConfig(
r=512,
lora_alpha=512,
lora_dropout=0,
init_lora_weights="gaussian",
target_modules=target_modules,
)
pipeline.transformer.add_adapter(lora_config)
lora_state_dict = load_file(lora_path, device=accelerator.device.__str__())
pipeline.transformer.load_state_dict(lora_state_dict, strict=False)
pipeline.transformer.fuse_lora(lora_scale=1, safe_fusing=False, adapter_names=["default"])
pipeline.transformer.unload_lora()
if args.enable_sequential_cpu_offload:
pipeline.enable_sequential_cpu_offload()
elif args.enable_model_cpu_offload:
pipeline.enable_model_cpu_offload()
else:
pipeline = pipeline.to(accelerator.device)
return pipeline
@spaces.GPU(duration=120)
def run(
instruction,
width_input,
height_input,
image_input_1,
image_input_2,
image_input_3,
scheduler: Literal["euler", "dpmsolver++"] = "euler",
num_inference_steps: int = 50,
negative_prompt: str = NEGATIVE_PROMPT,
guidance_scale_input: float = 5.0,
img_guidance_scale_input: float = 2.0,
cfg_range_start: float = 0.0,
cfg_range_end: float = 1.0,
num_images_per_prompt: int = 1,
max_input_image_side_length: int = 2048,
max_pixels: int = 1024 * 1024,
seed_input: int = -1,
align_res: bool = True,
):
if enable_taylorseer:
pipeline.enable_taylorseer = True
elif enable_teacache:
pipeline.transformer.enable_teacache = True
pipeline.transformer.teacache_rel_l1_thresh = 0.05
input_images = [image_input_1, image_input_2, image_input_3]
input_images = [img for img in input_images if img is not None]
if len(input_images) == 0:
input_images = None
if seed_input == -1:
seed_input = random.randint(0, 2**16 - 1)
generator = torch.Generator(device="cpu").manual_seed(seed_input) # set random to cpu to avoid different result on different GPU
if scheduler == 'euler' and not isinstance(pipeline.scheduler, FlowMatchEulerDiscreteScheduler):
pipeline.scheduler = FlowMatchEulerDiscreteScheduler()
elif scheduler == 'dpmsolver++' and not isinstance(pipeline.scheduler, DPMSolverMultistepScheduler):
pipeline.scheduler = DPMSolverMultistepScheduler(
algorithm_type="dpmsolver++",
solver_type="midpoint",
solver_order=2,
prediction_type="flow_prediction",
)
results = pipeline(
prompt=instruction,
input_images=input_images,
width=width_input,
height=height_input,
align_res=align_res,
max_input_image_side_length=max_input_image_side_length,
max_pixels=max_pixels,
num_inference_steps=num_inference_steps,
max_sequence_length=1024,
text_guidance_scale=guidance_scale_input,
image_guidance_scale=img_guidance_scale_input,
cfg_range=(cfg_range_start, cfg_range_end),
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
generator=generator,
output_type="pil",
)
vis_images = [to_tensor(image) * 2 - 1 for image in results.images]
output_image = create_collage(vis_images)
output_path = ""
if save_images:
# Create outputs directory if it doesn't exist
output_dir = SAVE_DIR
os.makedirs(output_dir, exist_ok=True)
# Generate unique filename with timestamp
timestamp = datetime.now().strftime("%Y_%m_%d-%H_%M_%S")
# Generate unique filename with timestamp
output_path = os.path.join(output_dir, f"{timestamp}_seed{seed_input}_{instruction[:20]}.png")
# Save the image
output_image.save(output_path)
# Save All Generated Images
if len(results.images) > 1:
for i, image in enumerate(results.images):
image_name, ext = os.path.splitext(output_path)
image.save(f"{image_name}_{i}{ext}")
return output_image, output_path
def get_examples(base_dir="assets/examples/OmniGen2"):
example_keys = ["instruction", "width_input", "height_input", "image_input_1", "image_input_2", "image_input_3", "seed_input", "align_res", "output_image", "output_image_OmniGen2"]
examples = []
example_configs = glob(os.path.join(base_dir, "*", "config.json"))
for config_path in example_configs:
with open(config_path, "r", encoding="utf-8") as f:
config = json.load(f)
_example = [config.get(k, None) for k in example_keys]
examples.append(_example)
return examples
with open("assets/logo.svg", "r", encoding="utf-8") as svg_file:
logo_content = svg_file.read()
title = f"""
<div style="display: flex; align-items: center; justify-content: center;">
<span style="transform: scale(0.7);margin-right: -5px;">{logo_content}</span>
<span style="font-size: 1.8em;margin-left: -10px;font-weight: bold; font-family: Gill Sans;">UMO (based on OmniGen2) by UXO Team</span>
</div>
""".strip()
badges_text = r"""
<div style="text-align: center; display: flex; justify-content: center; gap: 5px;">
<a href="https://github.com/bytedance/UMO"><img alt="Build" src="https://img.shields.io/github/stars/bytedance/UMO"></a>
<a href="https://bytedance.github.io/UMO/"><img alt="Build" src="https://img.shields.io/badge/Project%20Page-UMO-blue"></a>
<a href="https://huggingface.co/bytedance-research/UMO"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Model&color=green"></a>
<a href="https://arxiv.org/abs/2509.06818"><img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-UMO-b31b1b.svg"></a>
<a href="https://huggingface.co/spaces/bytedance-research/UMO_UNO"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Demo&message=UMO-UNO&color=orange"></a>
<a href="https://huggingface.co/spaces/bytedance-research/UMO_OmniGen2"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Demo&message=UMO-OmniGen2&color=orange"></a>
</div>
""".strip()
tips = """
📌 ***UMO*** is a **U**nified **M**ulti-identity **O**ptimization framework to *boost the multi-ID fidelity and mitigate confusion* for image customization model, and the latest addition to the UXO family (<a href='https://github.com/bytedance/UMO' target='_blank'> UMO</a>, <a href='https://github.com/bytedance/USO' target='_blank'> USO</a> and <a href='https://github.com/bytedance/UNO' target='_blank'> UNO</a>).
🎨 UMO in the demo is trained based on <a href='https://github.com/VectorSpaceLab/OmniGen2' target='_blank'> OmniGen2</a>.
💡 We provide step-by-step instructions in our <a href='https://github.com/bytedance/UMO' target='_blank'> Github Repo</a>. Additionally, try the examples and comparison provided below the demo to quickly get familiar with UMO and spark your creativity!
<details>
<summary style="cursor: pointer; color: #d34c0e; font-weight: 500;"> ⚡️ Tips from the based OmniGen2</summary>
- Image Quality: Use high-resolution images (**at least 512x512 recommended**).
- Be Specific: Instead of "Add bird to desk", try "Add the bird from image 1 to the desk in image 2".
- Use English: English prompts currently yield better results.
- Increase image_guidance_scale for better consistency with the reference image:
- Image Editing: 1.3 - 2.0
- In-context Generation: 2.0 - 3.0
- For in-context edit (edit based multiple images), we recommend using the following prompt format: "Edit the first image: add/replace (the [object] with) the [object] from the second image. [descripton for your target image]."
- For example: "Edit the first image: add the man from the second image. The man is talking with a woman in the kitchen"
""".strip()
article = """
```bibtex
@article{cheng2025umo,
title={UMO: Scaling Multi-Identity Consistency for Image Customization via Matching Reward},
author={Cheng, Yufeng and Wu, Wenxu and Wu, Shaojin and Huang, Mengqi and Ding, Fei and He, Qian},
journal={arXiv preprint arXiv:2509.06818},
year={2025}
}
```
""".strip()
star = f"""
If UMO is helpful, please help to ⭐ our <a href='https://github.com/bytedance/UMO' target='_blank'> Github Repo</a> or cite our paper. Thanks a lot!
{article}
"""
def main(args):
# Gradio
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(badges_text)
gr.Markdown(tips)
with gr.Row():
with gr.Column():
# text prompt
instruction = gr.Textbox(
label='Enter your prompt',
info='Use "first/second image" or “第一张图/第二张图” as reference.',
placeholder="Type your prompt here...",
)
with gr.Row(equal_height=True):
# input images
image_input_1 = gr.Image(label="First Image", type="pil")
image_input_2 = gr.Image(label="Second Image", type="pil")
image_input_3 = gr.Image(label="Third Image", type="pil")
generate_button = gr.Button("Generate Image")
negative_prompt = gr.Textbox(
label="Enter your negative prompt",
placeholder="Type your negative prompt here...",
value=NEGATIVE_PROMPT,
)
# slider
with gr.Row(equal_height=True):
height_input = gr.Slider(
label="Height", minimum=256, maximum=2048, value=1024, step=128
)
width_input = gr.Slider(
label="Width", minimum=256, maximum=2048, value=1024, step=128
)
with gr.Accordion("Speed Up Options", open=True):
with gr.Row(equal_height=True):
global enable_taylorseer
global enable_teacache
enable_taylorseer = gr.Checkbox(label="Using TaylorSeer to speed up", value=True)
enable_teacache = gr.Checkbox(label="Using TeaCache to speed up", value=False)
with gr.Row(equal_height=True):
scheduler_input = gr.Dropdown(
label="Scheduler",
choices=["euler", "dpmsolver++"],
value="euler",
info="The scheduler to use for the model.",
)
num_inference_steps = gr.Slider(
label="Inference Steps", minimum=20, maximum=100, value=50, step=1
)
with gr.Accordion("Advanced Options", open=False):
with gr.Row(equal_height=True):
align_res = gr.Checkbox(
label="Align Resolution",
info="Align output's resolution with the first reference image. Only valid when there is only one reference image.",
value=True
)
with gr.Row(equal_height=True):
text_guidance_scale_input = gr.Slider(
label="Text Guidance Scale",
minimum=1.0,
maximum=8.0,
value=5.0,
step=0.1,
)
image_guidance_scale_input = gr.Slider(
label="Image Guidance Scale",
minimum=1.0,
maximum=3.0,
value=2.0,
step=0.1,
)
with gr.Row(equal_height=True):
cfg_range_start = gr.Slider(
label="CFG Range Start",
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.1,
)
cfg_range_end = gr.Slider(
label="CFG Range End",
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
)
def adjust_end_slider(start_val, end_val):
return max(start_val, end_val)
def adjust_start_slider(end_val, start_val):
return min(end_val, start_val)
cfg_range_start.input(
fn=adjust_end_slider,
inputs=[cfg_range_start, cfg_range_end],
outputs=[cfg_range_end]
)
cfg_range_end.input(
fn=adjust_start_slider,
inputs=[cfg_range_end, cfg_range_start],
outputs=[cfg_range_start]
)
with gr.Row(equal_height=True):
num_images_per_prompt = gr.Slider(
label="Number of images per prompt",
minimum=1,
maximum=4,
value=1,
step=1,
)
seed_input = gr.Slider(
label="Seed", minimum=-1, maximum=2147483647, value=-1, step=1
)
with gr.Row(equal_height=True):
max_input_image_side_length = gr.Slider(
label="max_input_image_side_length",
minimum=256,
maximum=2048,
value=2048,
step=256,
)
max_pixels = gr.Slider(
label="max_pixels",
minimum=256 * 256,
maximum=1536 * 1536,
value=1024 * 1024,
step=256 * 256,
)
with gr.Column():
with gr.Column():
# output image
output_image = gr.Image(label="Output Image")
global save_images
# save_images = gr.Checkbox(label="Save generated images", value=True)
save_images = True
with gr.Accordion("Examples Comparison with OmniGen2", open=False):
output_image_omnigen2 = gr.Image(label="Generated Image (OmniGen2)")
download_btn = gr.File(label="Download full-resolution", type="filepath", interactive=False)
gr.Markdown(star)
global accelerator
global pipeline
bf16 = True
accelerator = Accelerator(mixed_precision="bf16" if bf16 else "no")
weight_dtype = torch.bfloat16 if bf16 else torch.float32
pipeline = load_pipeline(accelerator, weight_dtype, args)
# click
generate_button.click(
run,
inputs=[
instruction,
width_input,
height_input,
image_input_1,
image_input_2,
image_input_3,
scheduler_input,
num_inference_steps,
negative_prompt,
text_guidance_scale_input,
image_guidance_scale_input,
cfg_range_start,
cfg_range_end,
num_images_per_prompt,
max_input_image_side_length,
max_pixels,
seed_input,
align_res,
],
outputs=[output_image, download_btn],
)
gr.Examples(
examples=get_examples("assets/examples/OmniGen2"),
inputs=[
instruction,
width_input,
height_input,
image_input_1,
image_input_2,
image_input_3,
seed_input,
align_res,
output_image,
output_image_omnigen2,
],
label="We provide examples for academic research. The vast majority of images used in this demo are either generated or from open-source datasets. If you have any concerns, please contact us, and we will promptly remove any inappropriate content.",
examples_per_page=15
)
# launch
demo.launch(share=args.share, server_port=args.port, server_name=args.server_name, ssr_mode=False)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", help="Share the Gradio app")
parser.add_argument(
"--port", type=int, default=7860, help="Port to use for the Gradio app"
)
parser.add_argument(
"--server_name", type=str, default=None
)
parser.add_argument(
"--model_path",
type=str,
default="OmniGen2/OmniGen2",
help="Path or HuggingFace name of the model to load."
)
parser.add_argument(
"--enable_model_cpu_offload",
action="store_true",
help="Enable model CPU offload."
)
parser.add_argument(
"--enable_sequential_cpu_offload",
action="store_true",
help="Enable sequential CPU offload."
)
parser.add_argument(
"--lora_path",
type=str,
default=None,
help="Path to the LoRA checkpoint to load."
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(args)
|