File size: 6,087 Bytes
5263009 cce4c78 5263009 cce4c78 5263009 cce4c78 0d12531 cce4c78 0d12531 cce4c78 0d12531 cce4c78 51ba8ce cce4c78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import gradio as gr
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
)
def main(
n_clusters:int=2,
n_samples:int=500,
n_features:int=2,
n_centers:int=4,
cluster_std:int=1,
):
# Generating the sample data from make_blobs
# This particular setting has one distinct cluster and 3 clusters placed close
# together.
X, y = make_blobs(
n_samples=n_samples,
n_features=n_features,
centers=n_centers,
cluster_std=cluster_std,
center_box=(-10.0, 10.0),
shuffle=True,
random_state=1,
)
# For reproducibility
n_clusters = int(n_clusters)
fig1, ax1 = plt.subplots()
fig1.set_size_inches(9, 4)
fig2, ax2 = plt.subplots()
fig2.set_size_inches(9, 4)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])
# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n_clusters=n_clusters, n_init="auto", random_state=10)
cluster_labels = clusterer.fit_predict(X)
# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print(
"For n_clusters =",
n_clusters,
"The average silhouette_score is :",
silhouette_avg,
)
# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.nipy_spectral(float(i) / n_clusters)
ax1.fill_betweenx(
np.arange(y_lower, y_upper),
0,
ith_cluster_silhouette_values,
facecolor=color,
edgecolor=color,
alpha=0.7,
)
# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")
# The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
# 2nd Plot showing the actual clusters formed
colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(
X[:, 0], X[:, 1], marker=".", s=30, lw=0, alpha=0.7, c=colors, edgecolor="k"
)
# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(
centers[:, 0],
centers[:, 1],
marker="o",
c="white",
alpha=1,
s=200,
edgecolor="k",
)
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker="$%d$" % i, alpha=1, s=50, edgecolor="k")
ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")
plt.suptitle(
"Silhouette analysis for KMeans clustering on sample data with n_clusters = %d"
% n_clusters,
fontsize=14,
fontweight="bold",
)
return fig1, fig2
title = '''# Selecting the number of clusters with silhouette analysis on KMeans clustering π'''
description = """
This app demonstrates a silhouette analysis for KMeans clustering on sample data.
The purpose of a clustering algorithm is to find groups of similar data points. The purpose of a silhouette analysis is to determine the optimal number of clusters for a given clustering algorithm. The silhouette analysis can be used on any clustering algorithm, but it is most commonly used with KMeans clustering.
"""
with gr.Blocks(theme=theme) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown('''### Dataset Generation Parameters''')
with gr.Row():
with gr.Column():
n_samples = gr.inputs.Slider(minimum=100, maximum=1000, default=500, step=50, label="n_samples")
n_features = gr.inputs.Slider(minimum=2, maximum=5, default=2, step=1, label="n_features")
n_clusters = gr.inputs.Slider(minimum=2, maximum=6, default=2, step=1, label="n_clusters")
n_centers = gr.inputs.Slider(minimum=2, maximum=5, default=4, step=1, label="n_centers")
cluster_std = gr.inputs.Slider(minimum=0.0, maximum=1.0, default=1, step=0.1, label="cluster_std")
run_button = gr.Button('Analyse Silhouette')
with gr.Row():
plot_silhouette = gr.Plot()
plot_clusters = gr.Plot()
outputs = [plot_silhouette, plot_clusters]
inputs = [n_clusters, n_samples,n_features,n_centers,cluster_std]
run_button.click(fn=main, inputs=inputs, outputs=outputs)
demo.launch() |