File size: 9,899 Bytes
1fdaf11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import gradio as gr

from src import argilla_utils
from src import dataset
from src import spaces



def refresh_dataset_settings_view(
    columns,
    question_columns,
    field_columns,
    split,
    settings,
    dataset_name,
    argilla_dataset_name,
    mapping,
):
    """This is a utility function to refresh the gradio applications state variables when a new dataset is loaded."""
    columns = dataset.load_columns()
    field_columns = dataset.get_field_columns()
    question_columns = dataset.get_question_columns()
    metadata_columns = []
    vector_columns = []
    split = dataset.load_split()
    settings = None
    dataset_name = dataset.load_dataset_name()
    argilla_dataset_name = dataset.load_argilla_dataset_name()
    mapping = None
    return (
        columns,
        field_columns,
        question_columns,
        metadata_columns,
        vector_columns,
        split,
        settings,
        dataset_name,
        argilla_dataset_name,
        mapping,
    )


with gr.Blocks() as app:
    ##############################################
    # Define the app state
    ##############################################

    columns = gr.State(dataset.load_columns)
    question_columns = gr.State(dataset.get_question_columns)
    field_columns = gr.State(dataset.get_field_columns)
    split = gr.State(dataset.load_split)
    settings = gr.State(None)
    dataset_name = gr.State(dataset.load_dataset_name)
    argilla_dataset_name = gr.State(dataset.load_argilla_dataset_name)
    mapping = gr.State(None)

    state_variables = [
        columns,
        question_columns,
        field_columns,
        split,
        settings,
        dataset_name,
        argilla_dataset_name,
        mapping,
    ]

    ##############################################
    # Define the app dataset and argilla space
    ##############################################

    gr.Markdown(
        """# 🚂 Argilla Direct
        A direct connection from a Hub dataset to an Argilla dataset.
        This app allows you to create an Argilla dataset from a Hugging Face dataset. 
        You will need to load a dataset from the Hugging Face Hub, create an Argilla space, 
        define the dataset's settings, and add records to the dataset.
        """
    )

    with gr.Group():
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        dataset_name_input = gr.Textbox(
                            label="Dataset Repo ID", value=dataset.load_dataset_name()
                        )
                    with gr.Column():
                        split_input = gr.Dropdown(
                            label="Dataset Split",
                            choices=dataset.load_split_choices(),
                            allow_custom_value=True,
                            value=dataset.load_split(),
                        )
                    load_dataset_btn = gr.Button(value="1️⃣ Load Dataset")
            with gr.Column():
                argilla_space_name = gr.Textbox(
                    label="Argilla Space Name", value=f"{dataset_name.value}_argilla"
                )

                create_argilla_space_btn = gr.Button(value="2️⃣ Create Argilla Space")

    ##############################################
    # Define the Argilla dataset configuration
    ##############################################

    gr.Markdown(
        """## 3️⃣ Define Argilla Dataset
        Define the settings for the Argilla dataset including fields, questions, metadata, and vectors.
        Select the columns from the Hugging Face dataset to be used as Argilla dataset attributes.
        """
    )

    with gr.Row():
        with gr.Group():
            with gr.Column():
                # DATASET SETTINGS

                # Argilla dataset name
                argilla_dataset_name_view = gr.Textbox(
                    label="Dataset Name",
                    info="The name of the dataset in Argilla to be created or used",
                    value=dataset.load_argilla_dataset_name(),
                )
                argilla_dataset_name_view.change(
                    fn=lambda value: gr.update(
                        value=dataset.load_argilla_dataset_name()
                    ),
                    inputs=[argilla_dataset_name_view],
                    outputs=[argilla_dataset_name_view],
                )

                # Field columns
                field_columns_view = gr.Dropdown(
                    label="Field Columns",
                    info="Columns to be used as fields in the Argilla dataset",
                    choices=dataset.load_columns(),
                    multiselect=True,
                    value=dataset.get_field_columns(),
                    allow_custom_value=True,
                )
                field_columns_view.change(
                    fn=lambda value: gr.update(choices=dataset.load_columns()),
                    inputs=[field_columns_view],
                    outputs=[field_columns_view],
                )

                # Question columns
                question_columns_view = gr.Dropdown(
                    label="Question Columns",
                    info="Columns to be used as question suggestions in the Argilla dataset",
                    choices=dataset.load_columns(),
                    multiselect=True,
                    value=dataset.get_field_columns(),
                    allow_custom_value=True,
                )

                question_columns_view.change(
                    fn=lambda value: gr.update(choices=dataset.load_columns()),
                    inputs=[question_columns_view],
                    outputs=[question_columns_view],
                )

                with gr.Accordion(label="Define New Questions", open=False):
                    with gr.Group():
                        with gr.Column():
                            question_type = gr.Dropdown(
                                label="Question Type",
                                info="The type of question to be added to the Argilla dataset",
                                choices=["Text", "Label", "Rating"],
                            )
                        with gr.Column():
                            question_name = gr.Textbox(
                                label="Question Name",
                                info="The name of the question to be added to the Argilla dataset",
                            )
                        with gr.Column():
                            gr.Button(value="Add Question").click(
                                fn=lambda type, name, questions: questions
                                + [(type, name)],
                                inputs=[
                                    question_type,
                                    question_name,
                                    question_columns_view,
                                ],
                                outputs=[question_columns_view],
                            )

                with gr.Accordion(label="Define Metadata and Vectors", open=False):
                    metadata_columns_view = gr.Dropdown(
                        label="Metadata Columns",
                        info="Columns to be used as metadata in the Argilla dataset",
                        choices=dataset.load_columns(),
                        multiselect=True,
                    )
                    vector_columns_view = gr.Dropdown(
                        label="Vector Columns",
                        info="Columns to be used as vectors in the Argilla dataset",
                        choices=dataset.load_columns(),
                        multiselect=True,
                    )

                n_records = gr.Slider(1, 10000, 100, label="Number of Records")
                create_argilla_dataset_btn = gr.Button(value="Create Argilla Dataset")
                add_records_btn = gr.Button(value="Add Records to Argilla")
                delete_dataset_btn = gr.Button(value="Delete Argilla Dataset")

        with gr.Column():
            dataset_view = gr.Dataframe(
                label="Dataset Viewer",
                column_widths="20%",
                headers=columns.value,
                wrap=True,
            )
            records_view = gr.Text(label="Status", value="")

    ##############################################
    # Define the app logic
    ##############################################

    load_dataset_btn.click(
        fn=dataset.load_dataset_from_hub,
        inputs=[dataset_name_input],
        outputs=[dataset_view],
    ).then(
        fn=refresh_dataset_settings_view,
        inputs=state_variables,
        outputs=[
            columns,
            question_columns_view,
            field_columns_view,
            split_input,
            settings,
            dataset_name,
            argilla_dataset_name_view,
            mapping,
        ],
    )

    create_argilla_space_btn.click(
        fn=spaces.create_argilla_space,
        inputs=[argilla_space_name],
        outputs=[records_view],
    )

    delete_dataset_btn.click(
        fn=argilla_utils.delete_dataset,
        inputs=[argilla_dataset_name_view],
        outputs=[records_view],
    )

    create_argilla_dataset_btn.click(
        fn=argilla_utils.define_dataset_setting,
        inputs=[
            argilla_dataset_name_view,
            field_columns_view,
            question_columns_view,
            metadata_columns_view,
            vector_columns_view,
        ],
        outputs=[records_view, mapping],
    )

    add_records_btn.click(
        fn=argilla_utils.add_records,
        inputs=[argilla_dataset_name_view, mapping, n_records],
        outputs=[records_view],
    )


if __name__ == "__main__":
    app.launch()