Spaces:
Running
Running
File size: 5,552 Bytes
89a4326 cf0796f 89a4326 cf0796f f6af28c 89a4326 74f70f7 89a4326 f6af28c cf0796f 89a4326 cf0796f 89a4326 cf0796f 89a4326 223039f ee37ec6 f6af28c 86b922e 389611d 223039f cf0796f f6af28c cf0796f f6af28c cf0796f ce820b3 74f70f7 cf0796f 74f70f7 cf0796f ce820b3 74f70f7 ce820b3 74f70f7 cf0796f 74f70f7 cf0796f 74f70f7 89a4326 cf0796f 74f70f7 ce820b3 fd88ff9 cf0796f de6733b cf0796f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import os
import gradio as gr
import base64
from random import randint
from all_models import models
from io import BytesIO
from PIL import Image
from fastapi import FastAPI, Request
from translatepy import Translator
css_code = """
#custom_textbox {
width: 100%;
min-height: 150px;
}
#custom_gen_button {
background: #4CAF50 !important;
color: white !important;
}
#custom_stop_button {
background: #F44336 !important;
color: white !important;
}
#custom_image {
width: 100%;
max-height: 768px;
}
"""
# Initialize translator
translator = Translator()
# Load models
models_load = {}
for model in models:
try:
models_load[model] = gr.load(f'models/{model}')
except Exception as error:
models_load[model] = gr.Interface(lambda txt: None, ['text'], ['image'])
app = FastAPI()
def gen_image(model_str, prompt):
if model_str == 'NA':
return None
# Translate prompt to English {noise} {klir}
translated_prompt = str(translator.translate(prompt, 'English'))
noise = str(randint(0, 4294967296))
klir = '| ultra detail, ultra elaboration, ultra quality, perfect'
return models_load[model_str](f'{translated_prompt}')
def image_to_base64(image):
buffered = BytesIO()
if isinstance(image, str): # if it's a file path
img = Image.open(image)
img.save(buffered, format="JPEG")
else: # if it's a PIL Image
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode()
# API endpoint
@app.post("/generate")
async def api_generate(request: Request):
data = await request.json()
model = data.get('model', models[0])
prompt = data.get('prompt', '')
if model not in models:
return {"error": "Model not found"}
# Translate prompt to English for API endpoint too
translated_prompt = str(translator.translate(prompt, 'English'))
image = gen_image(model, translated_prompt)
if image is None:
return {"error": "Image generation failed"}
base64_str = image_to_base64(image)
return {
"status": "success",
"model": model,
"original_prompt": prompt,
"translated_prompt": translated_prompt,
"image_base64": base64_str,
"image_format": "jpeg"
}
# Gradio Interface
def make_me():
with gr.Row():
# Left Column (50% width)
with gr.Column(scale=1, min_width=400):
txt_input = gr.Textbox(
label='Your prompt:',
lines=4,
container=False,
elem_id="custom_textbox",
placeholder="Enter your prompt here..."
)
model_dropdown = gr.Dropdown(
models,
label="Select LoRA Model",
value=models[0] if models else None,
container=False
)
with gr.Row():
gen_button = gr.Button(
'Generate Image',
elem_id="custom_gen_button",
variant='primary'
)
stop_button = gr.Button(
'Stop',
variant='stop',
elem_id="custom_stop_button",
interactive=False
)
# Right Column (50% width)
with gr.Column(scale=1, min_width=400):
output_image = gr.Image(
label="Generated Image",
elem_id="custom_image",
show_label=True,
interactive=False
)
json_output = gr.JSON(
label="API Response",
container=False
)
# Functionality remains the same
def generate_wrapper(model_str, prompt):
# Translate prompt to English
translated_prompt = str(translator.translate(prompt, 'English'))
image = gen_image(model_str, translated_prompt)
if image is None:
return None, {"error": "Generation failed"}
base64_str = image_to_base64(image)
response = {
"status": "success",
"model": model_str,
"original_prompt": prompt,
"translated_prompt": translated_prompt,
"image_base64": base64_str,
"image_format": "jpeg"
}
return image, response
def on_generate_click():
return gr.Button(interactive=False), gr.Button(interactive=True)
def on_stop_click():
return gr.Button(interactive=True), gr.Button(interactive=False)
gen_event = gen_button.click(
on_generate_click,
inputs=None,
outputs=[gen_button, stop_button]
).then(
generate_wrapper,
[model_dropdown, txt_input],
[output_image, json_output]
).then(
on_stop_click,
inputs=None,
outputs=[gen_button, stop_button]
)
stop_button.click(
on_stop_click,
inputs=None,
outputs=[gen_button, stop_button],
cancels=[gen_event]
)
# Create Gradio app
with gr.Blocks(css=css_code, title="Image Generation App") as demo:
gr.Markdown("# Image Generation Tool")
make_me()
# Enable queue before mounting
demo.queue(concurrency_count=50)
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |