File size: 5,552 Bytes
89a4326
 
cf0796f
89a4326
 
cf0796f
 
 
f6af28c
89a4326
74f70f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89a4326
f6af28c
 
 
cf0796f
 
 
 
 
 
 
89a4326
cf0796f
89a4326
cf0796f
89a4326
223039f
ee37ec6
f6af28c
86b922e
 
389611d
223039f
cf0796f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6af28c
 
 
cf0796f
 
 
 
 
 
 
 
f6af28c
 
cf0796f
 
 
 
 
ce820b3
 
74f70f7
 
cf0796f
 
 
 
 
74f70f7
cf0796f
ce820b3
74f70f7
 
 
 
 
 
ce820b3
74f70f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf0796f
 
 
 
 
 
 
74f70f7
 
 
 
cf0796f
74f70f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89a4326
cf0796f
74f70f7
 
ce820b3
fd88ff9
cf0796f
de6733b
cf0796f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import gradio as gr
import base64
from random import randint
from all_models import models
from io import BytesIO
from PIL import Image
from fastapi import FastAPI, Request
from translatepy import Translator

css_code = """
#custom_textbox {
    width: 100%;
    min-height: 150px;
}
#custom_gen_button {
    background: #4CAF50 !important;
    color: white !important;
}
#custom_stop_button {
    background: #F44336 !important;
    color: white !important;
}
#custom_image {
    width: 100%;
    max-height: 768px;
}
"""

# Initialize translator
translator = Translator()

# Load models
models_load = {}
for model in models:
    try:
        models_load[model] = gr.load(f'models/{model}')
    except Exception as error:
        models_load[model] = gr.Interface(lambda txt: None, ['text'], ['image'])

app = FastAPI()

def gen_image(model_str, prompt):
    if model_str == 'NA':
        return None
    # Translate prompt to English {noise} {klir}
    translated_prompt = str(translator.translate(prompt, 'English'))
    noise = str(randint(0, 4294967296))
    klir = '| ultra detail, ultra elaboration, ultra quality, perfect'
    return models_load[model_str](f'{translated_prompt}')

def image_to_base64(image):
    buffered = BytesIO()
    if isinstance(image, str):  # if it's a file path
        img = Image.open(image)
        img.save(buffered, format="JPEG")
    else:  # if it's a PIL Image
        image.save(buffered, format="JPEG")
    return base64.b64encode(buffered.getvalue()).decode()

# API endpoint
@app.post("/generate")
async def api_generate(request: Request):
    data = await request.json()
    model = data.get('model', models[0])
    prompt = data.get('prompt', '')
    
    if model not in models:
        return {"error": "Model not found"}
    
    # Translate prompt to English for API endpoint too
    translated_prompt = str(translator.translate(prompt, 'English'))
    image = gen_image(model, translated_prompt)
    if image is None:
        return {"error": "Image generation failed"}
    
    base64_str = image_to_base64(image)
    
    return {
        "status": "success",
        "model": model,
        "original_prompt": prompt,
        "translated_prompt": translated_prompt,
        "image_base64": base64_str,
        "image_format": "jpeg"
    }

# Gradio Interface
def make_me():
    with gr.Row():
        # Left Column (50% width)
        with gr.Column(scale=1, min_width=400):
            txt_input = gr.Textbox(
                label='Your prompt:', 
                lines=4, 
                container=False, 
                elem_id="custom_textbox", 
                placeholder="Enter your prompt here..."
            )
            
            model_dropdown = gr.Dropdown(
                models, 
                label="Select LoRA Model", 
                value=models[0] if models else None,
                container=False
            )
            
            with gr.Row():
                gen_button = gr.Button(
                    'Generate Image', 
                    elem_id="custom_gen_button",
                    variant='primary'
                )
                stop_button = gr.Button(
                    'Stop', 
                    variant='stop',
                    elem_id="custom_stop_button",
                    interactive=False
                )
        
        # Right Column (50% width)
        with gr.Column(scale=1, min_width=400):
            output_image = gr.Image(
                label="Generated Image", 
                elem_id="custom_image", 
                show_label=True, 
                interactive=False
            )
            
            json_output = gr.JSON(
                label="API Response",
                container=False
            )
            
    # Functionality remains the same
    def generate_wrapper(model_str, prompt):
        # Translate prompt to English
        translated_prompt = str(translator.translate(prompt, 'English'))
        image = gen_image(model_str, translated_prompt)
        if image is None:
            return None, {"error": "Generation failed"}
        
        base64_str = image_to_base64(image)
        response = {
            "status": "success",
            "model": model_str,
            "original_prompt": prompt,
            "translated_prompt": translated_prompt,
            "image_base64": base64_str,
            "image_format": "jpeg"
        }
        return image, response
    
    def on_generate_click():
        return gr.Button(interactive=False), gr.Button(interactive=True)
    
    def on_stop_click():
        return gr.Button(interactive=True), gr.Button(interactive=False)
    
    gen_event = gen_button.click(
        on_generate_click,
        inputs=None,
        outputs=[gen_button, stop_button]
    ).then(
        generate_wrapper,
        [model_dropdown, txt_input],
        [output_image, json_output]
    ).then(
        on_stop_click,
        inputs=None,
        outputs=[gen_button, stop_button]
    )
    
    stop_button.click(
        on_stop_click,
        inputs=None,
        outputs=[gen_button, stop_button],
        cancels=[gen_event]
    )

# Create Gradio app
with gr.Blocks(css=css_code, title="Image Generation App") as demo: 
    gr.Markdown("# Image Generation Tool")
    make_me()

# Enable queue before mounting
demo.queue(concurrency_count=50)

# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)