Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,136 +1,75 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
import base64
|
4 |
from random import randint
|
5 |
from all_models import models
|
6 |
-
from io import BytesIO
|
7 |
-
from PIL import Image
|
8 |
-
from fastapi import FastAPI, Request
|
9 |
|
10 |
css_code = os.getenv("DazDinGo_CSS")
|
11 |
|
12 |
-
|
13 |
-
models_load
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
if model_str == 'NA':
|
24 |
return None
|
25 |
noise = str(randint(0, 4294967296))
|
26 |
klir = '| ultra detail, ultra elaboration, ultra quality, perfect'
|
27 |
return models_load[model_str](f'{prompt} {klir} {noise}')
|
28 |
|
29 |
-
def image_to_base64(image):
|
30 |
-
buffered = BytesIO()
|
31 |
-
if isinstance(image, str): # if it's a file path
|
32 |
-
img = Image.open(image)
|
33 |
-
img.save(buffered, format="JPEG")
|
34 |
-
else: # if it's a PIL Image
|
35 |
-
image.save(buffered, format="JPEG")
|
36 |
-
return base64.b64encode(buffered.getvalue()).decode()
|
37 |
-
|
38 |
-
# API endpoint
|
39 |
-
@app.post("/generate")
|
40 |
-
async def api_generate(request: Request):
|
41 |
-
data = await request.json()
|
42 |
-
model = data.get('model', models[0])
|
43 |
-
prompt = data.get('prompt', '')
|
44 |
-
|
45 |
-
if model not in models:
|
46 |
-
return {"error": "Model not found"}
|
47 |
-
|
48 |
-
image = gen_image(model, prompt)
|
49 |
-
if image is None:
|
50 |
-
return {"error": "Image generation failed"}
|
51 |
-
|
52 |
-
base64_str = image_to_base64(image)
|
53 |
-
|
54 |
-
return {
|
55 |
-
"status": "success",
|
56 |
-
"model": model,
|
57 |
-
"prompt": prompt,
|
58 |
-
"image_base64": base64_str,
|
59 |
-
"image_format": "jpeg"
|
60 |
-
}
|
61 |
-
|
62 |
-
# Gradio Interface
|
63 |
def make_me():
|
64 |
with gr.Row():
|
65 |
with gr.Column(scale=4):
|
66 |
-
txt_input = gr.Textbox(
|
67 |
-
label='Your prompt:',
|
68 |
-
lines=4,
|
69 |
-
container=False,
|
70 |
-
elem_id="custom_textbox",
|
71 |
-
placeholder="Prompt"
|
72 |
-
)
|
73 |
|
74 |
with gr.Column(scale=1):
|
75 |
-
gen_button = gr.Button('Generate
|
76 |
-
stop_button = gr.Button('Stop', variant='secondary', interactive=False,
|
77 |
-
elem_id="custom_stop_button")
|
78 |
|
79 |
def on_generate_click():
|
80 |
-
return gr.Button('Generate
|
81 |
|
82 |
def on_stop_click():
|
83 |
-
return gr.Button('Generate
|
84 |
|
85 |
gen_button.click(on_generate_click, inputs=None, outputs=[gen_button, stop_button])
|
86 |
stop_button.click(on_stop_click, inputs=None, outputs=[gen_button, stop_button])
|
87 |
|
88 |
with gr.Row():
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
json_output = gr.JSON(label="API Response")
|
103 |
-
|
104 |
-
def generate_wrapper(model_str, prompt):
|
105 |
-
image = gen_image(model_str, prompt)
|
106 |
-
if image is None:
|
107 |
-
return None, {"error": "Generation failed"}
|
108 |
-
|
109 |
-
base64_str = image_to_base64(image)
|
110 |
-
response = {
|
111 |
-
"status": "success",
|
112 |
-
"model": model_str,
|
113 |
-
"prompt": prompt,
|
114 |
-
"image_base64": base64_str,
|
115 |
-
"image_format": "jpeg"
|
116 |
-
}
|
117 |
-
return image, response
|
118 |
-
|
119 |
-
gen_event = gen_button.click(generate_wrapper, [model_dropdown, txt_input],
|
120 |
-
[output_image, json_output])
|
121 |
-
stop_button.click(on_stop_click, inputs=None,
|
122 |
-
outputs=[gen_button, stop_button], cancels=[gen_event])
|
123 |
|
124 |
-
# Create Gradio app
|
125 |
with gr.Blocks(css=css_code) as demo:
|
126 |
make_me()
|
127 |
|
128 |
-
# Enable queue before mounting
|
129 |
demo.queue(concurrency_count=50)
|
130 |
-
|
131 |
-
# Mount Gradio app to FastAPI
|
132 |
-
app = gr.mount_gradio_app(app, demo, path="/")
|
133 |
-
|
134 |
-
if __name__ == "__main__":
|
135 |
-
import uvicorn
|
136 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
|
|
3 |
from random import randint
|
4 |
from all_models import models
|
|
|
|
|
|
|
5 |
|
6 |
css_code = os.getenv("DazDinGo_CSS")
|
7 |
|
8 |
+
def load_fn(models):
|
9 |
+
global models_load
|
10 |
+
models_load = {}
|
11 |
+
for model in models:
|
12 |
+
if model not in models_load.keys():
|
13 |
+
try:
|
14 |
+
m = gr.load(f'models/{model}')
|
15 |
+
except Exception as error:
|
16 |
+
m = gr.Interface(lambda txt: None, ['text'], ['image'])
|
17 |
+
models_load.update({model: m})
|
18 |
|
19 |
+
load_fn(models)
|
20 |
|
21 |
+
num_models = len(models)
|
22 |
+
default_models = models[:num_models]
|
23 |
+
|
24 |
+
def extend_choices(choices):
|
25 |
+
return choices + (num_models - len(choices)) * ['NA']
|
26 |
+
|
27 |
+
def update_imgbox(choices):
|
28 |
+
choices_plus = extend_choices(choices)
|
29 |
+
return [gr.Image(None, label=m, visible=(m != 'NA'), elem_id="custom_image") for m in choices_plus]
|
30 |
+
|
31 |
+
def gen_fn(model_str, prompt):
|
32 |
if model_str == 'NA':
|
33 |
return None
|
34 |
noise = str(randint(0, 4294967296))
|
35 |
klir = '| ultra detail, ultra elaboration, ultra quality, perfect'
|
36 |
return models_load[model_str](f'{prompt} {klir} {noise}')
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
def make_me():
|
39 |
with gr.Row():
|
40 |
with gr.Column(scale=4):
|
41 |
+
txt_input = gr.Textbox(label='Your prompt:', lines=4, container=False, elem_id="custom_textbox", placeholder="Prompt", height=250)
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
with gr.Column(scale=1):
|
44 |
+
gen_button = gr.Button('Generate images', elem_id="custom_gen_button")
|
45 |
+
stop_button = gr.Button('Stop', variant='secondary', interactive=False, elem_id="custom_stop_button")
|
|
|
46 |
|
47 |
def on_generate_click():
|
48 |
+
return gr.Button('Generate images', elem_id="custom_gen_button"), gr.Button('Stop', variant='secondary', interactive=True, elem_id="custom_stop_button")
|
49 |
|
50 |
def on_stop_click():
|
51 |
+
return gr.Button('Generate images', elem_id="custom_gen_button"), gr.Button('Stop', variant='secondary', interactive=False, elem_id="custom_stop_button")
|
52 |
|
53 |
gen_button.click(on_generate_click, inputs=None, outputs=[gen_button, stop_button])
|
54 |
stop_button.click(on_stop_click, inputs=None, outputs=[gen_button, stop_button])
|
55 |
|
56 |
with gr.Row():
|
57 |
+
output = [gr.Image(label=m, width=512, max_height=768, elem_id="custom_image", show_label=True, interactive=False, show_share_button=False) for m in default_models]
|
58 |
+
current_models = [gr.Textbox(m, visible=False) for m in default_models]
|
59 |
+
for m, o in zip(current_models, output):
|
60 |
+
gen_event = gen_button.click(gen_fn, [m, txt_input], o)
|
61 |
+
stop_button.click(on_stop_click, inputs=None, outputs=[gen_button, stop_button], cancels=[gen_event])
|
62 |
+
|
63 |
+
with gr.Accordion('Model selection', elem_id="custom_accordion"):
|
64 |
+
model_choice = gr.CheckboxGroup(models, label=f'{num_models} different models selected', value=default_models, interactive=True, elem_id="custom_checkbox_group")
|
65 |
+
model_choice.change(update_imgbox, model_choice, output)
|
66 |
+
model_choice.change(extend_choices, model_choice, current_models)
|
67 |
+
|
68 |
+
with gr.Row():
|
69 |
+
gr.HTML("")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
|
|
71 |
with gr.Blocks(css=css_code) as demo:
|
72 |
make_me()
|
73 |
|
|
|
74 |
demo.queue(concurrency_count=50)
|
75 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|