buio commited on
Commit
105fcc0
·
1 Parent(s): 593d914

removed magic !pip installs

Browse files
Files changed (1) hide show
  1. app.py +17 -63
app.py CHANGED
@@ -7,10 +7,14 @@ Original file is located at
7
  https://colab.research.google.com/drive/1ckZU76dq3XWcpa5PpQF8a6qJwkTttg8v
8
 
9
  # ⚙️ Setup
10
-
11
- ## Fix random seeds
12
  """
13
 
 
 
 
 
 
 
14
  SEED = 11
15
  import os
16
  os.environ['PYTHONHASHSEED']=str(SEED)
@@ -24,46 +28,22 @@ tf.random.set_seed(SEED)
24
 
25
  """## Imports"""
26
 
27
- !pip install gradio -q
28
-
29
  import gradio as gr
30
-
31
- from scipy import linalg
32
- import matplotlib.pyplot as plt
33
  import pandas as pd
34
-
35
- from tensorflow import keras
36
- from tensorflow.keras import layers
37
- from keras.applications.inception_v3 import InceptionV3, preprocess_input
38
-
39
- from tensorflow.keras.layers import Layer, Input, Dense, Reshape, Flatten
40
- from tensorflow.keras.layers import Conv2D, Conv2DTranspose, ReLU, LeakyReLU
41
- from tensorflow.keras.layers import Dropout, Embedding, Concatenate, Add, Activation
42
- from tensorflow.keras.layers import GlobalAveragePooling2D, UpSampling2D, BatchNormalization
43
- import tensorflow.keras.backend as K
44
-
45
- from tensorflow.python.keras.utils import conv_utils
46
- from tensorflow.keras.initializers import RandomNormal
47
- from tensorflow.keras.optimizers import Adam
48
-
49
- !pip install tensorflow_addons
50
- import tensorflow_addons as tfa
51
- from tensorflow_addons.layers import SpectralNormalization
52
-
53
  import gdown
54
  from zipfile import ZipFile
55
 
56
- from tqdm.notebook import tqdm
57
-
58
  """## Download CelebA attributes
59
 
60
  We'll use face images from the CelebA dataset, resized to 64x64.
61
  """
62
 
63
  #Download labels from public github, they have been processed in a 0,1 csv file
64
- !mkdir "/content/celeba_gan"
65
- !wget -q -O "/content/celeba_gan/list_attr_celeba01.csv.zip" "https://github.com/buoi/conditional-face-GAN/blob/main/list_attr_celeba01.csv.zip?raw=true"
66
- !unzip -o "/content/celeba_gan/list_attr_celeba01.csv.zip" -d "/content/celeba_gan"
 
67
 
68
  """## Dataset preprocessing functions"""
69
 
@@ -127,12 +107,13 @@ acgan40_hd = ModelEntry('buio','booicugb','acgan10_nonseparBNstdev_split_299_218
127
  #2o3z6bqb SAGAN_5 v17 buianifolli
128
  #zscel8bz SAGAN_6 v29 buianifolli
129
 
 
130
  #sagan40 v18
131
 
132
- keras_metadata_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6Mjg3MzA4NTY=/5f09f68e9bb5b09efbc37ad76cdcdbb0"
133
- saved_model_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6Mjg3NDY1OTU=/2676cd88ef1866d6e572916e413a933e"
134
- variables_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6Mjg3NDY1OTU=/5cab1cb7351f0732ea137fb2d2e0d4ec"
135
- index_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6Mjg3NDY1OTU=/480b55762c3358f868b8cce53984736b"
136
 
137
  #sagan10 v16
138
 
@@ -141,9 +122,6 @@ saved_model_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY
141
  variables_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6MjYxMzQ0Mjg=/a62bf0c4bf7047c0a31df7d2cfdb54f0"
142
  index_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6MjYxMzQ0Mjg=/de6539a7f0909d1dafa89571c7df43d1"
143
 
144
-
145
-
146
-
147
  #download model
148
  gan_path = "/content/gan_model/"
149
  try:
@@ -157,7 +135,7 @@ os.makedirs(gan_path,exist_ok =True)
157
  os.makedirs(gan_path+"/variables",exist_ok =True)
158
 
159
 
160
- !pip install wget -q
161
  import wget
162
  wget.download(keras_metadata_url, gan_path+"keras_metadata.pb",)
163
  wget.download(saved_model_url, gan_path+"saved_model.pb")
@@ -243,28 +221,4 @@ iface = gr.Interface(
243
  "image",
244
  layout='unaligned'
245
  )
246
- iface.launch(debug=True)
247
-
248
- def sentence_builder(quantity, animal, place, activity_list, morning):
249
- return f"""The {quantity} {animal}s went to the {place} where they {" and ".join(activity_list)} until the {"morning" if morning else "night"}"""
250
-
251
- def generate_image(attributes)
252
-
253
- iface = gr.Interface(
254
- sentence_builder,
255
- [
256
- gr.inputs.Slider(2, 20),
257
- gr.inputs.Dropdown(["cat", "dog", "bird"]),
258
- gr.inputs.Radio(["park", "zoo", "road"]),
259
- gr.inputs.CheckboxGroup(["ran", "swam", "ate", "slept"]),
260
- gr.inputs.Checkbox(label="Is it the morning?"),
261
- ],
262
- "text",
263
- examples=[
264
- [2, "cat", "park", ["ran", "swam"], True],
265
- [4, "dog", "zoo", ["ate", "swam"], False],
266
- [10, "bird", "road", ["ran"], False],
267
- [8, "cat", "zoo", ["ate"], True],
268
- ],
269
- )
270
  iface.launch()
 
7
  https://colab.research.google.com/drive/1ckZU76dq3XWcpa5PpQF8a6qJwkTttg8v
8
 
9
  # ⚙️ Setup
 
 
10
  """
11
 
12
+ #!pip install gradio -q
13
+ #!pip install wget -q
14
+ #!pip install tensorflow_addons -q
15
+
16
+ """## Fix random seeds"""
17
+
18
  SEED = 11
19
  import os
20
  os.environ['PYTHONHASHSEED']=str(SEED)
 
28
 
29
  """## Imports"""
30
 
 
 
31
  import gradio as gr
32
+ import wget
 
 
33
  import pandas as pd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  import gdown
35
  from zipfile import ZipFile
36
 
 
 
37
  """## Download CelebA attributes
38
 
39
  We'll use face images from the CelebA dataset, resized to 64x64.
40
  """
41
 
42
  #Download labels from public github, they have been processed in a 0,1 csv file
43
+ os.mkdir("/content/celeba_gan")
44
+ wget.download(url="https://github.com/buoi/conditional-face-GAN/blob/main/list_attr_celeba01.csv.zip?raw=true", out="/content/celeba_gan/list_attr_celeba01.csv.zip")
45
+ import shutil
46
+ shutil.unpack_archive(filename="/content/celeba_gan/list_attr_celeba01.csv.zip", extract_dir="/content/celeba_gan")
47
 
48
  """## Dataset preprocessing functions"""
49
 
 
107
  #2o3z6bqb SAGAN_5 v17 buianifolli
108
  #zscel8bz SAGAN_6 v29 buianifolli
109
 
110
+ #wandb artifacts
111
  #sagan40 v18
112
 
113
+ #keras_metadata_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6Mjg3MzA4NTY=/5f09f68e9bb5b09efbc37ad76cdcdbb0"
114
+ #saved_model_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6Mjg3NDY1OTU=/2676cd88ef1866d6e572916e413a933e"
115
+ #variables_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6Mjg3NDY1OTU=/5cab1cb7351f0732ea137fb2d2e0d4ec"
116
+ #index_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6Mjg3NDY1OTU=/480b55762c3358f868b8cce53984736b"
117
 
118
  #sagan10 v16
119
 
 
122
  variables_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6MjYxMzQ0Mjg=/a62bf0c4bf7047c0a31df7d2cfdb54f0"
123
  index_url = "https://api.wandb.ai/artifactsV2/gcp-us/buianifolli/QXJ0aWZhY3Q6MjYxMzQ0Mjg=/de6539a7f0909d1dafa89571c7df43d1"
124
 
 
 
 
125
  #download model
126
  gan_path = "/content/gan_model/"
127
  try:
 
135
  os.makedirs(gan_path+"/variables",exist_ok =True)
136
 
137
 
138
+
139
  import wget
140
  wget.download(keras_metadata_url, gan_path+"keras_metadata.pb",)
141
  wget.download(saved_model_url, gan_path+"saved_model.pb")
 
221
  "image",
222
  layout='unaligned'
223
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224
  iface.launch()