LPX
		
	commited on
		
		
					Commit 
							
							·
						
						b6b6807
	
1
								Parent(s):
							
							67f3560
								
🐛 fix(image):
Browse files- correct typo in 'ViT-base Classifer' to 'ViT-base Classifier'
- rename model_3 and model_4 feature extractor variable names for uniformity
  change the redundant print pattern for debug in model images wiith feature extractor in predict api
 feature_extractor_3 to model_3 in 【GD LOVE】 function monitor for bug excess unexpected error output
 feature_extractor_4 to model_4
  map header value variables for neural networking endoument pattern fix
    	
        app.py
    CHANGED
    
    | @@ -84,6 +84,7 @@ def predict_with_model(img_pil, clf, class_names, confidence_threshold, model_na | |
| 84 | 
             
                return label, result_output
         | 
| 85 |  | 
| 86 | 
             
            @spaces.GPU(duration=10)
         | 
|  | |
| 87 | 
             
            def predict_image(img, confidence_threshold):
         | 
| 88 | 
             
                if not isinstance(img, Image.Image):
         | 
| 89 | 
             
                    raise ValueError(f"Expected a PIL Image, but got {type(img)}")
         | 
| @@ -95,9 +96,9 @@ def predict_image(img, confidence_threshold): | |
| 95 | 
             
                img_pilvits = transforms.Resize((224, 224))(img_pil)
         | 
| 96 |  | 
| 97 | 
             
                label_1, result_1output = predict_with_model(img_pil, clf_1, CLASS_NAMES["model_1"], confidence_threshold, "SwinV2-base", 1)
         | 
| 98 | 
            -
                label_2, result_2output = predict_with_model(img_pilvits, clf_2, CLASS_NAMES["model_2"], confidence_threshold, "ViT-base  | 
| 99 | 
            -
                label_3, result_3output = predict_with_model(img_pil,  | 
| 100 | 
            -
                label_4, result_4output = predict_with_model(img_pil,  | 
| 101 | 
             
                label_5, result_5output = predict_with_model(img_pilvits, clf_5, CLASS_NAMES["model_5"], confidence_threshold, "ViT-base Newcomer", 5)
         | 
| 102 | 
             
                label_5b, result_5boutput = predict_with_model(img_pilvits, clf_5b, CLASS_NAMES["model_5b"], confidence_threshold, "ViT-base Newcomer", 6)
         | 
| 103 |  | 
| @@ -109,12 +110,10 @@ def predict_image(img, confidence_threshold): | |
| 109 | 
             
                    "prithivMLmods": label_5,
         | 
| 110 | 
             
                    "prithivMLmods-2-22": label_5b
         | 
| 111 | 
             
                }
         | 
| 112 | 
            -
                print(combined_results)
         | 
| 113 |  | 
| 114 | 
             
                combined_outputs = [result_1output, result_2output, result_3output, result_4output, result_5output, result_5boutput]
         | 
| 115 | 
             
                return img_pil, combined_outputs
         | 
| 116 |  | 
| 117 | 
            -
             | 
| 118 | 
             
            # Define a function to generate the HTML content
         | 
| 119 | 
             
            # Define a function to generate the HTML content
         | 
| 120 | 
             
            def generate_results_html(results):
         | 
|  | |
| 84 | 
             
                return label, result_output
         | 
| 85 |  | 
| 86 | 
             
            @spaces.GPU(duration=10)
         | 
| 87 | 
            +
            # app.py
         | 
| 88 | 
             
            def predict_image(img, confidence_threshold):
         | 
| 89 | 
             
                if not isinstance(img, Image.Image):
         | 
| 90 | 
             
                    raise ValueError(f"Expected a PIL Image, but got {type(img)}")
         | 
|  | |
| 96 | 
             
                img_pilvits = transforms.Resize((224, 224))(img_pil)
         | 
| 97 |  | 
| 98 | 
             
                label_1, result_1output = predict_with_model(img_pil, clf_1, CLASS_NAMES["model_1"], confidence_threshold, "SwinV2-base", 1)
         | 
| 99 | 
            +
                label_2, result_2output = predict_with_model(img_pilvits, clf_2, CLASS_NAMES["model_2"], confidence_threshold, "ViT-base Classifier", 2)
         | 
| 100 | 
            +
                label_3, result_3output = predict_with_model(img_pil, model_3, CLASS_NAMES["model_3"], confidence_threshold, "SDXL-Trained", 3)
         | 
| 101 | 
            +
                label_4, result_4output = predict_with_model(img_pil, model_4, CLASS_NAMES["model_4"], confidence_threshold, "SDXL + FLUX", 4)
         | 
| 102 | 
             
                label_5, result_5output = predict_with_model(img_pilvits, clf_5, CLASS_NAMES["model_5"], confidence_threshold, "ViT-base Newcomer", 5)
         | 
| 103 | 
             
                label_5b, result_5boutput = predict_with_model(img_pilvits, clf_5b, CLASS_NAMES["model_5b"], confidence_threshold, "ViT-base Newcomer", 6)
         | 
| 104 |  | 
|  | |
| 110 | 
             
                    "prithivMLmods": label_5,
         | 
| 111 | 
             
                    "prithivMLmods-2-22": label_5b
         | 
| 112 | 
             
                }
         | 
|  | |
| 113 |  | 
| 114 | 
             
                combined_outputs = [result_1output, result_2output, result_3output, result_4output, result_5output, result_5boutput]
         | 
| 115 | 
             
                return img_pil, combined_outputs
         | 
| 116 |  | 
|  | |
| 117 | 
             
            # Define a function to generate the HTML content
         | 
| 118 | 
             
            # Define a function to generate the HTML content
         | 
| 119 | 
             
            def generate_results_html(results):
         | 
 
			
