Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -17,8 +17,17 @@ clf = pipeline(model=model, task="image-classification", image_processor=image_p | |
| 17 | 
             
            class_names = ['artificial', 'real']
         | 
| 18 |  | 
| 19 | 
             
            def predict_image(img, confidence_threshold):
         | 
| 20 | 
            -
                 | 
| 21 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 22 | 
             
                img_pil = transforms.Resize((256, 256))(img_pil)
         | 
| 23 |  | 
| 24 | 
             
                # Get the prediction
         | 
| @@ -39,7 +48,7 @@ def predict_image(img, confidence_threshold): | |
| 39 | 
             
                    return f"Label: real, Confidence: {result['real']:.4f}"
         | 
| 40 | 
             
                else:
         | 
| 41 | 
             
                    return "Uncertain Classification"
         | 
| 42 | 
            -
             | 
| 43 | 
             
            # Define the Gradio interface
         | 
| 44 | 
             
            image = gr.Image(label="Image to Analyze", sources=['upload'], type='pil')  # Ensure the image type is PIL
         | 
| 45 | 
             
            confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
         | 
|  | |
| 17 | 
             
            class_names = ['artificial', 'real']
         | 
| 18 |  | 
| 19 | 
             
            def predict_image(img, confidence_threshold):
         | 
| 20 | 
            +
                print(f"Type of img: {type(img)}")  # Debugging statement
         | 
| 21 | 
            +
                if not isinstance(img, Image.Image):
         | 
| 22 | 
            +
                    raise ValueError(f"Expected a PIL Image, but got {type(img)}")
         | 
| 23 | 
            +
                
         | 
| 24 | 
            +
                # Convert the image to RGB if not already
         | 
| 25 | 
            +
                if img.mode != 'RGB':
         | 
| 26 | 
            +
                    img_pil = img.convert('RGB')
         | 
| 27 | 
            +
                else:
         | 
| 28 | 
            +
                    img_pil = img
         | 
| 29 | 
            +
                
         | 
| 30 | 
            +
                # Resize the image
         | 
| 31 | 
             
                img_pil = transforms.Resize((256, 256))(img_pil)
         | 
| 32 |  | 
| 33 | 
             
                # Get the prediction
         | 
|  | |
| 48 | 
             
                    return f"Label: real, Confidence: {result['real']:.4f}"
         | 
| 49 | 
             
                else:
         | 
| 50 | 
             
                    return "Uncertain Classification"
         | 
| 51 | 
            +
                    
         | 
| 52 | 
             
            # Define the Gradio interface
         | 
| 53 | 
             
            image = gr.Image(label="Image to Analyze", sources=['upload'], type='pil')  # Ensure the image type is PIL
         | 
| 54 | 
             
            confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
         | 
 
			
