Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,59 +2,49 @@ import gradio as gr
|
|
2 |
import os
|
3 |
from langchain_openai import ChatOpenAI
|
4 |
|
5 |
-
# Set up the SambaNova Chat API client
|
6 |
api_key = os.environ.get("FEATHERLESS_API_KEY")
|
7 |
-
llm = ChatOpenAI(
|
8 |
-
base_url="https://api.featherless.ai/v1/",
|
9 |
-
api_key=api_key,
|
10 |
-
streaming=True,
|
11 |
-
model="mistralai/Magistral-Small-2506",
|
12 |
-
)
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
llm.max_tokens = max_tokens
|
34 |
llm.temperature = temperature
|
35 |
llm.top_p = top_p
|
36 |
-
|
37 |
response = ""
|
38 |
for chunk in llm.stream(messages):
|
39 |
-
|
40 |
-
response += token
|
41 |
yield response
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
maximum=1.0,
|
52 |
-
value=0.95,
|
53 |
-
step=0.05,
|
54 |
-
label="Top-p (nucleus sampling)",
|
55 |
-
),
|
56 |
-
],
|
57 |
-
)
|
58 |
|
59 |
-
|
60 |
demo.launch()
|
|
|
2 |
import os
|
3 |
from langchain_openai import ChatOpenAI
|
4 |
|
|
|
5 |
api_key = os.environ.get("FEATHERLESS_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
MODEL_CHOICES = [
|
8 |
+
"Qwen/Qwen3-32B",
|
9 |
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
|
10 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
11 |
+
"mistralai/Magistral-Small-2506",
|
12 |
+
"unsloth/DeepSeek-R1-Distill-Llama-70B",
|
13 |
+
"unsloth/Qwen2.5-72B-Instruct",
|
14 |
+
"unsloth/Llama-3.3-70B-Instruct",
|
15 |
+
]
|
16 |
+
|
17 |
+
def create_llm(model_name: str):
|
18 |
+
return ChatOpenAI(
|
19 |
+
base_url="https://api.featherless.ai/v1/",
|
20 |
+
api_key=api_key,
|
21 |
+
streaming=True,
|
22 |
+
model=model_name,
|
23 |
+
)
|
24 |
+
|
25 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p, model_name):
|
26 |
+
llm = create_llm(model_name)
|
27 |
+
messages = [{"role":"system","content":system_message}]
|
28 |
+
for u, a in history:
|
29 |
+
if u: messages.append({"role":"user","content":u})
|
30 |
+
if a: messages.append({"role":"assistant","content":a})
|
31 |
+
messages.append({"role":"user","content":message})
|
32 |
llm.max_tokens = max_tokens
|
33 |
llm.temperature = temperature
|
34 |
llm.top_p = top_p
|
|
|
35 |
response = ""
|
36 |
for chunk in llm.stream(messages):
|
37 |
+
response += chunk.content
|
|
|
38 |
yield response
|
39 |
|
40 |
+
with gr.Blocks() as demo:
|
41 |
+
with gr.Row():
|
42 |
+
model_dropdown = gr.Dropdown(choices=MODEL_CHOICES, value=MODEL_CHOICES[0], label="Pilih model")
|
43 |
+
chatbot = gr.Chatbot()
|
44 |
+
system_msg = gr.Textbox("You are a friendly Chatbot.", label="System message")
|
45 |
+
max_t = gr.Slider(1, 16384, value=2048, step=1, label="Max new tokens")
|
46 |
+
temp = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
|
47 |
+
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top‑p")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
model_dropdown.change(lambda x: None, inputs=model_dropdown, outputs=[])
|
50 |
demo.launch()
|