broadsword007 commited on
Commit
35787a4
·
verified ·
1 Parent(s): 763f860

Upload 77 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +10 -0
  2. VideoLLaMA2/.gitignore +58 -0
  3. VideoLLaMA2/LICENSE +201 -0
  4. VideoLLaMA2/README.md +372 -0
  5. VideoLLaMA2/assets/cat_and_chicken.mp4 +3 -0
  6. VideoLLaMA2/assets/logo.png +3 -0
  7. VideoLLaMA2/assets/pipeline.png +3 -0
  8. VideoLLaMA2/assets/sora.mp4 +3 -0
  9. VideoLLaMA2/assets/sora.png +3 -0
  10. VideoLLaMA2/pyproject.toml +41 -0
  11. VideoLLaMA2/requirements.txt +39 -0
  12. VideoLLaMA2/scripts/custom/finetune.sh +73 -0
  13. VideoLLaMA2/scripts/custom/finetune_lora.sh +74 -0
  14. VideoLLaMA2/scripts/custom/finetune_qlora.sh +74 -0
  15. VideoLLaMA2/scripts/eval/eval_video_cap_msvc.sh +67 -0
  16. VideoLLaMA2/scripts/eval/eval_video_mcqa_egoschema.sh +41 -0
  17. VideoLLaMA2/scripts/eval/eval_video_mcqa_mvbench.sh +46 -0
  18. VideoLLaMA2/scripts/eval/eval_video_mcqa_perception_test_mcqa.sh +45 -0
  19. VideoLLaMA2/scripts/eval/eval_video_mcqa_videomme.sh +84 -0
  20. VideoLLaMA2/scripts/eval/eval_video_oqa_activitynet.sh +54 -0
  21. VideoLLaMA2/scripts/eval/eval_video_oqa_msvd.sh +54 -0
  22. VideoLLaMA2/scripts/eval/eval_video_oqa_vcgpt_1_correctness.sh +58 -0
  23. VideoLLaMA2/scripts/eval/eval_video_oqa_vcgpt_2_detail.sh +58 -0
  24. VideoLLaMA2/scripts/eval/eval_video_oqa_vcgpt_3_context.sh +58 -0
  25. VideoLLaMA2/scripts/eval/eval_video_oqa_vcgpt_4_temporal.sh +54 -0
  26. VideoLLaMA2/scripts/eval/eval_video_oqa_vcgpt_5_consistency.sh +54 -0
  27. VideoLLaMA2/scripts/vllava/finetune.sh +73 -0
  28. VideoLLaMA2/scripts/vllava/pretrain.sh +73 -0
  29. VideoLLaMA2/scripts/zero2.json +23 -0
  30. VideoLLaMA2/scripts/zero3.json +28 -0
  31. VideoLLaMA2/videollama2/__init__.py +114 -0
  32. VideoLLaMA2/videollama2/constants.py +32 -0
  33. VideoLLaMA2/videollama2/conversation.py +507 -0
  34. VideoLLaMA2/videollama2/eval/eval_video_cap_msvc_correctness.py +259 -0
  35. VideoLLaMA2/videollama2/eval/eval_video_cap_msvc_detailedness.py +257 -0
  36. VideoLLaMA2/videollama2/eval/eval_video_mcqa_mvbench.py +64 -0
  37. VideoLLaMA2/videollama2/eval/eval_video_mcqa_videomme.py +277 -0
  38. VideoLLaMA2/videollama2/eval/eval_video_oqa_activitynet.py +210 -0
  39. VideoLLaMA2/videollama2/eval/eval_video_oqa_vcgpt_1_correctness.py +210 -0
  40. VideoLLaMA2/videollama2/eval/eval_video_oqa_vcgpt_2_detailed_orientation.py +210 -0
  41. VideoLLaMA2/videollama2/eval/eval_video_oqa_vcgpt_3_context.py +212 -0
  42. VideoLLaMA2/videollama2/eval/eval_video_oqa_vcgpt_4_temporal.py +206 -0
  43. VideoLLaMA2/videollama2/eval/eval_video_oqa_vcgpt_5_consistency.py +218 -0
  44. VideoLLaMA2/videollama2/eval/inference_video_cap_msvc.py +120 -0
  45. VideoLLaMA2/videollama2/eval/inference_video_mcqa_egoschema.py +153 -0
  46. VideoLLaMA2/videollama2/eval/inference_video_mcqa_mvbench.py +203 -0
  47. VideoLLaMA2/videollama2/eval/inference_video_mcqa_perception_test_mcqa.py +169 -0
  48. VideoLLaMA2/videollama2/eval/inference_video_mcqa_videomme.py +304 -0
  49. VideoLLaMA2/videollama2/eval/inference_video_oqa_activitynet.py +150 -0
  50. VideoLLaMA2/videollama2/eval/inference_video_oqa_vcgpt_consistency.py +150 -0
.gitattributes CHANGED
@@ -33,3 +33,13 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ VideoLLaMA2/assets/cat_and_chicken.mp4 filter=lfs diff=lfs merge=lfs -text
37
+ VideoLLaMA2/assets/logo.png filter=lfs diff=lfs merge=lfs -text
38
+ VideoLLaMA2/assets/pipeline.png filter=lfs diff=lfs merge=lfs -text
39
+ VideoLLaMA2/assets/sora.mp4 filter=lfs diff=lfs merge=lfs -text
40
+ VideoLLaMA2/assets/sora.png filter=lfs diff=lfs merge=lfs -text
41
+ VideoLLaMA2/videollama2/serve/examples/1034346401.mp4 filter=lfs diff=lfs merge=lfs -text
42
+ VideoLLaMA2/videollama2/serve/examples/desert.jpg filter=lfs diff=lfs merge=lfs -text
43
+ VideoLLaMA2/videollama2/serve/examples/sample_demo_1.mp4 filter=lfs diff=lfs merge=lfs -text
44
+ VideoLLaMA2/videollama2/serve/examples/sample_demo_3.mp4 filter=lfs diff=lfs merge=lfs -text
45
+ VideoLLaMA2/videollama2/serve/examples/sample_demo_9.mp4 filter=lfs diff=lfs merge=lfs -text
VideoLLaMA2/.gitignore ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Python
2
+ __pycache__
3
+ *.pyc
4
+ *.egg-info
5
+ dist
6
+
7
+ # Log
8
+ *.log
9
+ *.log.*
10
+ *.json
11
+ *.jsonl
12
+ log_dir*/
13
+ temp*/
14
+
15
+ # Data
16
+ !**/alpaca-data-conversation.json
17
+
18
+ # Editor
19
+ .idea
20
+ *.swp
21
+
22
+ # Other
23
+ .DS_Store
24
+ 3rd_parties
25
+
26
+ # jupyter
27
+ .ipynb_checkpoints
28
+ *.ipynb
29
+
30
+ # DevContainer
31
+ !.devcontainer/*
32
+
33
+ # Demo
34
+ serve_images/
35
+ temp/
36
+
37
+ # data folder
38
+ data/
39
+ dataset/
40
+ datasets/
41
+
42
+ # training folder
43
+ wandb
44
+ ckpts*
45
+ output
46
+ output/
47
+ checkpoints
48
+ checkpoints/
49
+ work_dirs*/
50
+
51
+ # evaluation folder
52
+ /eval
53
+ /eval*
54
+
55
+ # pretrained weights
56
+ pretrained/
57
+ publish_models/
58
+ public_models/
VideoLLaMA2/LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
VideoLLaMA2/README.md ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p align="center">
2
+ <img src="https://github.com/DAMO-NLP-SG/VideoLLaMA2/blob/e7bc34e0e9a96d77947a75b54399d9f96ccf209d/assets/logo.png" width="150" style="margin-bottom: 0.2;"/>
3
+ <p>
4
+
5
+ <h3 align="center"><a href="https://arxiv.org/abs/2406.07476" style="color:#9C276A">
6
+ VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs</a></h3>
7
+ <h5 align="center"> If our project helps you, please give us a star ⭐ on GitHub to support us. 🙏🙏 </h2>
8
+
9
+ <h5 align="center">
10
+
11
+ [![hf_space](https://img.shields.io/badge/🤗-AV--Demo-9C276A.svg)](https://huggingface.co/spaces/lixin4ever/VideoLLaMA2-AV)
12
+ [![hf_space](https://img.shields.io/badge/🤗-Demo-9C276A.svg)](https://huggingface.co/spaces/lixin4ever/VideoLLaMA2)
13
+ [![hf_checkpoint](https://img.shields.io/badge/🤗-Checkpoints-9C276A.svg)](https://huggingface.co/collections/DAMO-NLP-SG/videollama-2-6669b6b6f0493188305c87ed)
14
+ [![hf_data](https://img.shields.io/badge/🤗-MSVC-9C276A.svg)](https://huggingface.co/datasets/DAMO-NLP-SG/Multi-Source-Video-Captioning) <br>
15
+ [![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://github.com/DAMO-NLP-SG/VideoLLaMA2/blob/main/LICENSE)
16
+ [![Hits](https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2FDAMO-NLP-SG%2FVideoLLaMA2&count_bg=%2379C83D&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=Visitor&edge_flat=false)](https://hits.seeyoufarm.com)
17
+ [![GitHub issues](https://img.shields.io/github/issues/DAMO-NLP-SG/VideoLLaMA2?color=critical&label=Issues)](https://github.com/DAMO-NLP-SG/VideoLLaMA2/issues?q=is%3Aopen+is%3Aissue)
18
+ [![GitHub closed issues](https://img.shields.io/github/issues-closed/DAMO-NLP-SG/VideoLLaMA2?color=success&label=Issues)](https://github.com/DAMO-NLP-SG/VideoLLaMA2/issues?q=is%3Aissue+is%3Aclosed) <br>
19
+ [![hf_paper](https://img.shields.io/badge/🤗-Paper%20In%20HF-red.svg)](https://huggingface.co/papers/2406.07476)
20
+ [![arXiv](https://img.shields.io/badge/Arxiv-2406.07476-AD1C18.svg?logo=arXiv)](https://arxiv.org/abs/2406.07476) <br>
21
+
22
+ </h5>
23
+
24
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/videollama-2-advancing-spatial-temporal/zero-shot-video-question-answer-on-egoschema-1)](https://paperswithcode.com/sota/zero-shot-video-question-answer-on-egoschema-1?p=videollama-2-advancing-spatial-temporal) <br>
25
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/videollama-2-advancing-spatial-temporal/video-question-answering-on-perception-test)](https://paperswithcode.com/sota/video-question-answering-on-perception-test?p=videollama-2-advancing-spatial-temporal) <br>
26
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/videollama-2-advancing-spatial-temporal/video-question-answering-on-mvbench)](https://paperswithcode.com/sota/video-question-answering-on-mvbench?p=videollama-2-advancing-spatial-temporal) <br>
27
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/videollama-2-advancing-spatial-temporal/zero-shot-video-question-answer-on-video-mme-1)](https://paperswithcode.com/sota/zero-shot-video-question-answer-on-video-mme-1?p=videollama-2-advancing-spatial-temporal) <br>
28
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/videollama-2-advancing-spatial-temporal/zero-shot-video-question-answer-on-video-mme)](https://paperswithcode.com/sota/zero-shot-video-question-answer-on-video-mme?p=videollama-2-advancing-spatial-temporal) <br>
29
+
30
+ <details open><summary>💡 Some other multimodal-LLM projects from our team may interest you ✨. </summary><p>
31
+ <!-- may -->
32
+
33
+ > [**VideoLLaMA 3: Frontier Multimodal Foundation Models for Image and Video Understanding**](https://github.com/DAMO-NLP-SG/VideoLLaMA3) <br>
34
+ > Boqiang Zhang<sup>* </sup>, Kehan Li<sup>* </sup>, Zesen Cheng<sup>* </sup>, Zhiqiang Hu<sup>* </sup>, Yuqian Yuan<sup>* </sup>, Guanzheng Chen<sup>* </sup>, Sicong Leng<sup>* </sup>, Yuming Jiang<sup>* </sup>, Hang Zhang<sup>* </sup>, Xin Li<sup>* </sup>, Peng Jin, Wenqi Zhang, Fan Wang, Lidong Bing, Deli Zhao <br>
35
+ [![github](https://img.shields.io/badge/-Github-black?logo=github)](https://github.com/DAMO-NLP-SG/VideoLLaMA3) [![github](https://img.shields.io/github/stars/DAMO-NLP-SG/VideoLLaMA3.svg?style=social)](https://github.com/DAMO-NLP-SG/VideoLLaMA3) [![arXiv](https://img.shields.io/badge/Arxiv-2501.13106-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2501.13106) <br>
36
+
37
+ > [**Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding**](https://github.com/DAMO-NLP-SG/Video-LLaMA) <br>
38
+ > Hang Zhang, Xin Li, Lidong Bing <br>
39
+ [![github](https://img.shields.io/badge/-Github-black?logo=github)](https://github.com/DAMO-NLP-SG/Video-LLaMA) [![github](https://img.shields.io/github/stars/DAMO-NLP-SG/Video-LLaMA.svg?style=social)](https://github.com/DAMO-NLP-SG/Video-LLaMA) [![arXiv](https://img.shields.io/badge/Arxiv-2306.02858-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2306.02858) <br>
40
+
41
+ > [**VCD: Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding**](https://arxiv.org/abs/2311.16922) <br>
42
+ > Sicong Leng<sup>* </sup>, Hang Zhang<sup>* </sup>, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, Lidong Bing <br>
43
+ [![github](https://img.shields.io/badge/-Github-black?logo=github)](https://github.com/DAMO-NLP-SG/VCD) [![github](https://img.shields.io/github/stars/DAMO-NLP-SG/VCD.svg?style=social)](https://github.com/DAMO-NLP-SG/VCD) [![arXiv](https://img.shields.io/badge/Arxiv-2311.16922-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2311.16922) <br>
44
+
45
+ > [**The Curse of Multi-Modalities: Evaluating Hallucinations of Large Multimodal Models across Language, Visual, and Audio**](https://arxiv.org/abs/2410.12787) <br>
46
+ > Sicong Leng, Yun Xing, Zesen Cheng, Yang Zhou, Hang Zhang, Xin Li, Deli Zhao, Shijian Lu, Chunyan Miao, Lidong Bing <br>
47
+ [![github](https://img.shields.io/badge/-Github-black?logo=github)](https://github.com/DAMO-NLP-SG/CMM) [![github](https://img.shields.io/github/stars/DAMO-NLP-SG/CMM.svg?style=social)](https://github.com/DAMO-NLP-SG/CMM) [![arXiv](https://img.shields.io/badge/Arxiv-2410.12787-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2410.12787) <br>
48
+
49
+ > [**Breaking the Memory Barrier: Near Infinite Batch Size Scaling for Contrastive Loss**](https://arxiv.org/abs/2410.17243) <br>
50
+ > Zesen Cheng*, Hang Zhang*, Kehan Li*, Sicong Leng, Zhiqiang Hu, Fei Wu, Deli Zhao, Xin Li, Lidong Bing <br>
51
+ [![github](https://img.shields.io/badge/-Github-black?logo=github)](https://github.com/DAMO-NLP-SG/Inf-CLIP) [![github](https://img.shields.io/github/stars/DAMO-NLP-SG/Inf-CLIP.svg?style=social)](https://github.com/DAMO-NLP-SG/Inf-CLIP) [![arXiv](https://img.shields.io/badge/Arxiv-2410.17243-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2410.17243) <br>
52
+
53
+ </p></details>
54
+
55
+ <div align="center"><video src="https://github.com/DAMO-NLP-SG/VideoLLaMA2/assets/18526640/e0e7951c-f392-42ed-afad-b2c7984d3e38" width="800"></div>
56
+
57
+
58
+ ## 📰 News
59
+ * **[2025.01.21]** 🚀🚀 We are excited to officially launch [VideoLLaMA3](https://github.com/DAMO-NLP-SG/VideoLLaMA3), featuring enhanced performance across image and video benchmarks, along with a variety of easy-to-follow inference cookbooks. Try it out today!
60
+ * **[2024.10.22]** Release checkpoints of [VideoLLaMA2.1-7B-AV](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-AV). The audio_visual branch code can be seen here: https://github.com/DAMO-NLP-SG/VideoLLaMA2/tree/audio_visual.
61
+ * **[2024.10.15]** Release checkpoints of [VideoLLaMA2.1-7B-16F-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-16F-Base) and [VideoLLaMA2.1-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-16F).
62
+ * **[2024.08.14]** Release checkpoints of [VideoLLaMA2-72B-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-72B-Base) and [VideoLLaMA2-72B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-72B).
63
+ * **[2024.07.30]** Release checkpoints of [VideoLLaMA2-8x7B-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-8x7B-Base) and [VideoLLaMA2-8x7B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-8x7B).
64
+ * **[2024.06.25]** 🔥🔥 As of Jun 25, our [VideoLLaMA2-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B-16F) is the **Top-1** ~7B-sized VideoLLM on the [MLVU Leaderboard](https://github.com/JUNJIE99/MLVU?tab=readme-ov-file#trophy-mini-leaderboard).
65
+ * **[2024.06.18]** 🔥🔥 As of Jun 18, our [VideoLLaMA2-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B-16F) is the **Top-1** ~7B-sized VideoLLM on the [VideoMME Leaderboard](https://video-mme.github.io/home_page.html#leaderboard).
66
+ * **[2024.06.17]** 👋👋 Update technical report with the latest results and the missing references. If you have works closely related to VideoLLaMA 2 but not mentioned in the paper, feel free to let us know.
67
+ * **[2024.06.14]** 🔥🔥 [Online Demo](https://huggingface.co/spaces/lixin4ever/VideoLLaMA2) is available.
68
+ * **[2024.06.03]** Release training, evaluation, and serving codes of VideoLLaMA 2.
69
+
70
+
71
+ <img src="https://github.com/DAMO-NLP-SG/VideoLLaMA2/assets/18526640/b9faf24f-bdd2-4728-9385-acea17ea086d" width="800" />
72
+
73
+ ## 🛠️ Requirements and Installation
74
+ Basic Dependencies:
75
+ * Python >= 3.8
76
+ * Pytorch >= 2.2.0
77
+ * CUDA Version >= 11.8
78
+ * transformers == 4.40.0 (for reproducing paper results)
79
+ * tokenizers == 0.19.1
80
+
81
+ **[Online Mode]** Install required packages (better for development):
82
+ ```bash
83
+ git clone https://github.com/DAMO-NLP-SG/VideoLLaMA2
84
+ cd VideoLLaMA2
85
+ pip install -r requirements.txt
86
+ pip install flash-attn==2.5.8 --no-build-isolation
87
+ ```
88
+
89
+ **[Offline Mode]** Install VideoLLaMA2 as a Python package (better for direct use):
90
+ ```bash
91
+ git clone https://github.com/DAMO-NLP-SG/VideoLLaMA2
92
+ cd VideoLLaMA2
93
+ pip install --upgrade pip # enable PEP 660 support
94
+ pip install -e .
95
+ pip install flash-attn==2.5.8 --no-build-isolation
96
+ ```
97
+
98
+ ## 🚀 Main Results
99
+
100
+ ### Multi-Choice Video QA & Video Captioning
101
+ <p><img src="https://github.com/user-attachments/assets/e87fe4cf-07ea-4fde-998b-a0c63671c3b4" width="800" "/></p>
102
+
103
+ ### Open-Ended Video QA
104
+ <p><img src="https://github.com/user-attachments/assets/80b16c04-75ac-43b8-bc22-6952fdf994bb" width="800" "/></p>
105
+
106
+ ### Audio QA
107
+ <p><img src="https://github.com/user-attachments/assets/46e55952-5a54-4564-bcd4-cfa4edd7f36a" width="800" "/></p>
108
+
109
+ ### Audio-Visual QA
110
+ <p><img src="https://github.com/user-attachments/assets/8114c1e3-7f93-401b-9ea6-9ce7c96d7b05" width="800" "/></p>
111
+
112
+
113
+ ## :earth_americas: Model Zoo
114
+ ### Vision-only Checkpoints
115
+ | Model Name | Model Type | Visual Encoder | Language Decoder | # Training Frames |
116
+ |:----------------|:------------:|:----------------|:------------------|:----------------:|
117
+ | [VideoLLaMA2-7B-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B-Base) | Base | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 8 |
118
+ | [VideoLLaMA2-7B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B) | Chat | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 8 |
119
+ | [VideoLLaMA2-7B-16F-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B-16F-Base) | Base | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 16 |
120
+ | [VideoLLaMA2-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B-16F) | Chat | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 16 |
121
+ | [VideoLLaMA2-8x7B-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-8x7B-Base) | Base | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 8 |
122
+ | [VideoLLaMA2-8x7B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-8x7B) | Chat | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 8 |
123
+ | [VideoLLaMA2-72B-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-72B-Base) | Base | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) | 8 |
124
+ | [VideoLLaMA2-72B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-72B) | Chat | [clip-vit-large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) | [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) | 8 |
125
+ | [VideoLLaMA2.1-7B-16F-Base](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-16F-Base) | Base | [siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) | [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) | 16 |
126
+ | [VideoLLaMA2.1-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-16F) | Chat | [siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) | [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) | 16 |
127
+
128
+
129
+ ### Audio-Visual Checkpoints
130
+ | Model Name | Type | Audio Encoder | Language Decoder |
131
+ |:-------------------|:----------------|:----------------|:------------------|
132
+ | [VideoLLaMA2.1-7B-AV](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-AV) | Chat | [Fine-tuned BEATs_iter3+(AS2M)(cpt2)](https://1drv.ms/u/s!AqeByhGUtINrgcpj8ujXH1YUtxooEg?e=E9Ncea) | [VideoLLaMA2.1-7B-16F](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2.1-7B-16F) |
133
+
134
+
135
+
136
+ ## [🤗 Demo](https://huggingface.co/spaces/lixin4ever/VideoLLaMA2)
137
+
138
+ It is highly recommended to try our [online demo](https://huggingface.co/spaces/lixin4ever/VideoLLaMA2) first.
139
+
140
+ To run a video-based LLM (Large Language Model) web demonstration on your device, you will first need to ensure that you have the necessary model checkpoints prepared, followed by adhering to the steps outlined to successfully launch the demo.
141
+
142
+ ### Single-model Version
143
+
144
+ * Launch a gradio app directly ([VideoLLaMA2-7B](https://huggingface.co/DAMO-NLP-SG/VideoLLaMA2-7B) is adopted by default):
145
+ ```bash
146
+ python videollama2/serve/gradio_web_server_adhoc.py
147
+ ```
148
+
149
+ ### Multiple-model Version
150
+
151
+ 1. Launch a global controller
152
+ ```bash
153
+ cd /path/to/VideoLLaMA2
154
+ python -m videollama2.serve.controller --host 0.0.0.0 --port 10000
155
+ ```
156
+
157
+ 2. Launch a gradio webserver
158
+ ```bash
159
+ python -m videollama2.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload
160
+ ```
161
+
162
+ 3. Launch one or multiple model workers
163
+ ```bash
164
+ # export HF_ENDPOINT=https://hf-mirror.com # If you are unable to access Hugging Face, try to uncomment this line.
165
+ python -m videollama2.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path /PATH/TO/MODEL1
166
+ python -m videollama2.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40001 --worker http://localhost:40001 --model-path /PATH/TO/MODEL2
167
+ python -m videollama2.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40002 --worker http://localhost:40002 --model-path /PATH/TO/MODEL3
168
+ ...
169
+ ```
170
+
171
+
172
+ ## 🗝️ Training & Evaluation
173
+
174
+ ### Quick Start
175
+
176
+ To facilitate further development on top of our codebase, we provide a quick-start guide on how to train a customized [VideoLLaMA2](https://github.com/DAMO-NLP-SG/VideoLLaMA2) with [VideoLLaVA](https://github.com/PKU-YuanGroup/Video-LLaVA) dataset and evaluate the trained model on the mainstream video-llm benchmarks.
177
+
178
+ 1. Training Data Structure:
179
+ ```bash
180
+ VideoLLaMA2
181
+ ├── datasets
182
+ │ ├── videollava_pt
183
+ | | ├── llava_image/ # Available at: https://pan.baidu.com/s/17GYcE69FcJjjUM0e4Gad2w?pwd=9ga3 or https://drive.google.com/drive/folders/1QmFj2FcMAoWNCUyiUtdcW0-IOhLbOBcf?usp=drive_link
184
+ | | ├── valley/ # Available at: https://pan.baidu.com/s/1jluOimE7mmihEBfnpwwCew?pwd=jyjz or https://drive.google.com/drive/folders/1QmFj2FcMAoWNCUyiUtdcW0-IOhLbOBcf?usp=drive_link
185
+ | | └── valley_llavaimage.json # Available at: https://drive.google.com/file/d/1zGRyVSUMoczGq6cjQFmT0prH67bu2wXD/view, including 703K video-text and 558K image-text pairs
186
+ │ ├── videollava_sft
187
+ | | ├── llava_image_tune/ # Available at: https://pan.baidu.com/s/1l-jT6t_DlN5DTklwArsqGw?pwd=o6ko
188
+ | | ├── videochatgpt_tune/ # Available at: https://pan.baidu.com/s/10hJ_U7wVmYTUo75YHc_n8g?pwd=g1hf
189
+ | | └── videochatgpt_llavaimage_tune.json # Available at: https://drive.google.com/file/d/1zGRyVSUMoczGq6cjQFmT0prH67bu2wXD/view, including 100K video-centric, 625K image-centric and 40K text-only conversations
190
+ ```
191
+ 2. Command:
192
+ ```bash
193
+ # VideoLLaMA2-vllava pretraining
194
+ bash scripts/vllava/pretrain.sh
195
+ # VideoLLaMA2-vllava finetuning
196
+ bash scripts/vllava/finetune.sh
197
+ ```
198
+ 3. Evaluation Data Structure:
199
+ ```bash
200
+ VideoLLaMA2
201
+ ├── eval
202
+ │ ├── egoschema # Official website: https://github.com/egoschema/EgoSchema
203
+ | | ├── good_clips_git/ # Available at: https://drive.google.com/drive/folders/1SS0VVz8rML1e5gWq7D7VtP1oxE2UtmhQ
204
+ | | └── questions.json # Available at: https://github.com/egoschema/EgoSchema/blob/main/questions.json
205
+ │ ├── mvbench # Official website: https://huggingface.co/datasets/OpenGVLab/MVBench
206
+ | | ├── video/
207
+ | | | ├── clever/
208
+ | | | └── ...
209
+ | | └── json/
210
+ | | | ├── action_antonym.json
211
+ | | | └── ...
212
+ │ ├── perception_test_mcqa # Official website: https://huggingface.co/datasets/OpenGVLab/MVBench
213
+ | | ├── videos/ # Available at: https://storage.googleapis.com/dm-perception-test/zip_data/test_videos.zip
214
+ | | └── mc_question_test.json # Download from https://storage.googleapis.com/dm-perception-test/zip_data/mc_question_test_annotations.zip
215
+ │ ├── videomme # Official website: https://video-mme.github.io/home_page.html#leaderboard
216
+ | | ├── test-00000-of-00001.parquet
217
+ | | ├── videos/
218
+ | | └── subtitles/
219
+ │ ├── Activitynet_Zero_Shot_QA # Official website: https://github.com/MILVLG/activitynet-qa
220
+ | | ├── all_test/ # Available at: https://mbzuaiac-my.sharepoint.com/:u:/g/personal/hanoona_bangalath_mbzuai_ac_ae/EatOpE7j68tLm2XAd0u6b8ABGGdVAwLMN6rqlDGM_DwhVA?e=90WIuW
221
+ | | ├── test_q.json # Available at: https://github.com/MILVLG/activitynet-qa/tree/master/dataset
222
+ | | └── test_a.json # Available at: https://github.com/MILVLG/activitynet-qa/tree/master/dataset
223
+ │ ├── MSVD_Zero_Shot_QA # Official website: https://github.com/xudejing/video-question-answering
224
+ | | ├── videos/
225
+ | | ├── test_q.json
226
+ | | └── test_a.json
227
+ │ ├── videochatgpt_gen # Official website: https://github.com/mbzuai-oryx/Video-ChatGPT/tree/main/quantitative_evaluation
228
+ | | ├── Test_Videos/ # Available at: https://mbzuaiac-my.sharepoint.com/:u:/g/personal/hanoona_bangalath_mbzuai_ac_ae/EatOpE7j68tLm2XAd0u6b8ABGGdVAwLMN6rqlDGM_DwhVA?e=90WIuW
229
+ | | ├── Test_Human_Annotated_Captions/ # Available at: https://mbzuaiac-my.sharepoint.com/personal/hanoona_bangalath_mbzuai_ac_ae/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fhanoona%5Fbangalath%5Fmbzuai%5Fac%5Fae%2FDocuments%2FVideo%2DChatGPT%2FData%5FCode%5FModel%5FRelease%2FQuantitative%5FEvaluation%2Fbenchamarking%2FTest%5FHuman%5FAnnotated%5FCaptions%2Ezip&parent=%2Fpersonal%2Fhanoona%5Fbangalath%5Fmbzuai%5Fac%5Fae%2FDocuments%2FVideo%2DChatGPT%2FData%5FCode%5FModel%5FRelease%2FQuantitative%5FEvaluation%2Fbenchamarking&ga=1
230
+ | | ├── generic_qa.json # These three json files available at: https://mbzuaiac-my.sharepoint.com/personal/hanoona_bangalath_mbzuai_ac_ae/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fhanoona%5Fbangalath%5Fmbzuai%5Fac%5Fae%2FDocuments%2FVideo%2DChatGPT%2FData%5FCode%5FModel%5FRelease%2FQuantitative%5FEvaluation%2Fbenchamarking%2FBenchmarking%5FQA&ga=1
231
+ | | ├── temporal_qa.json
232
+ | | └── consistency_qa.json
233
+ ```
234
+ 4. Command:
235
+ ```bash
236
+ # mvbench evaluation
237
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/eval/eval_video_qa_mvbench.sh
238
+ # activitynet-qa evaluation (need to set azure openai key/endpoint/deployname)
239
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/eval/eval_video_qa_mvbench.sh
240
+ ```
241
+
242
+ ### Data Format
243
+
244
+ If you want to train a video-llm on your data, you need to follow the procedures below to prepare the video/image sft data:
245
+
246
+ 1. Suppose your data structure is like:
247
+ ```bash
248
+ VideoLLaMA2
249
+ ├── datasets
250
+ │ ├── custom_sft
251
+ │ | ├── images
252
+ │ | ├── videos
253
+ | | └── custom.json
254
+ ```
255
+ 2. Then you should re-organize the annotated video/image sft data according to the following format:
256
+ ```json
257
+ [
258
+ {
259
+ "id": 0,
260
+ "video": "images/xxx.jpg",
261
+ "conversations": [
262
+ {
263
+ "from": "human",
264
+ "value": "<image>\nWhat are the colors of the bus in the image?"
265
+ },
266
+ {
267
+ "from": "gpt",
268
+ "value": "The bus in the image is white and red."
269
+ },
270
+ ...
271
+ ],
272
+ }
273
+ {
274
+ "id": 1,
275
+ "video": "videos/xxx.mp4",
276
+ "conversations": [
277
+ {
278
+ "from": "human",
279
+ "value": "<video>\nWhat are the main activities that take place in the video?"
280
+ },
281
+ {
282
+ "from": "gpt",
283
+ "value": "The main activities that take place in the video are the preparation of camera equipment by a man, a group of men riding a helicopter, and a man sailing a boat through the water."
284
+ },
285
+ ...
286
+ ],
287
+ },
288
+ ...
289
+ ]
290
+ ```
291
+ 3. Modify the `scripts/custom/finetune.sh`:
292
+ ```bash
293
+ ...
294
+ --data_path datasets/custom_sft/custom.json
295
+ --data_folder datasets/custom_sft/
296
+ --pretrain_mm_mlp_adapter CONNECTOR_DOWNLOAD_PATH (e.g., DAMO-NLP-SG/VideoLLaMA2.1-7B-16F-Base)
297
+ ...
298
+ ```
299
+
300
+ ## 🤖 Inference
301
+
302
+ Video/Image Inference:
303
+ ```python
304
+ import sys
305
+ sys.path.append('./')
306
+ from videollama2 import model_init, mm_infer
307
+ from videollama2.utils import disable_torch_init
308
+
309
+
310
+ def inference():
311
+ disable_torch_init()
312
+
313
+ # Video Inference
314
+ modal = 'video'
315
+ modal_path = 'assets/cat_and_chicken.mp4'
316
+ instruct = 'What animals are in the video, what are they doing, and how does the video feel?'
317
+ # Reply:
318
+ # The video features a kitten and a baby chick playing together. The kitten is seen laying on the floor while the baby chick hops around. The two animals interact playfully with each other, and the video has a cute and heartwarming feel to it.
319
+
320
+ # Image Inference
321
+ modal = 'image'
322
+ modal_path = 'assets/sora.png'
323
+ instruct = 'What is the woman wearing, what is she doing, and how does the image feel?'
324
+ # Reply:
325
+ # The woman in the image is wearing a black coat and sunglasses, and she is walking down a rain-soaked city street. The image feels vibrant and lively, with the bright city lights reflecting off the wet pavement, creating a visually appealing atmosphere. The woman's presence adds a sense of style and confidence to the scene, as she navigates the bustling urban environment.
326
+
327
+ model_path = 'DAMO-NLP-SG/VideoLLaMA2.1-7B-16F'
328
+ # Base model inference (only need to replace model_path)
329
+ # model_path = 'DAMO-NLP-SG/VideoLLaMA2.1-7B-16F-Base'
330
+ model, processor, tokenizer = model_init(model_path)
331
+ output = mm_infer(processor[modal](modal_path), instruct, model=model, tokenizer=tokenizer, do_sample=False, modal=modal)
332
+
333
+ print(output)
334
+
335
+ if __name__ == "__main__":
336
+ inference()
337
+ ```
338
+
339
+ ## 📑 Citation
340
+
341
+ If you find VideoLLaMA useful for your research and applications, please cite using this BibTeX:
342
+ ```bibtex
343
+ @article{damonlpsg2024videollama2,
344
+ title={VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs},
345
+ author={Cheng, Zesen and Leng, Sicong and Zhang, Hang and Xin, Yifei and Li, Xin and Chen, Guanzheng and Zhu, Yongxin and Zhang, Wenqi and Luo, Ziyang and Zhao, Deli and Bing, Lidong},
346
+ journal={arXiv preprint arXiv:2406.07476},
347
+ year={2024},
348
+ url = {https://arxiv.org/abs/2406.07476}
349
+ }
350
+
351
+ @article{damonlpsg2023videollama,
352
+ title = {Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding},
353
+ author = {Zhang, Hang and Li, Xin and Bing, Lidong},
354
+ journal = {arXiv preprint arXiv:2306.02858},
355
+ year = {2023},
356
+ url = {https://arxiv.org/abs/2306.02858}
357
+ }
358
+ ```
359
+
360
+ ## 👍 Acknowledgement
361
+ The codebase of VideoLLaMA 2 is adapted from [**LLaVA 1.5**](https:github.com/haotian-liu/LLaVA) and [**FastChat**](https://github.com/lm-sys/FastChat). We are also grateful for the following projects our VideoLLaMA 2 arise from:
362
+ * [**LLaMA 2**](https://github.com/meta-llama/llama), [**Mistral-7B**](https://mistral.ai/news/announcing-mistral-7b/), [**OpenAI CLIP**](https://openai.com/index/clip/), [**Qwen2**](https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f), [**SigLIP**](https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba), [**Honeybee**](https://github.com/kakaobrain/honeybee).
363
+ * [**Video-ChatGPT**](https://github.com/mbzuai-oryx/Video-ChatGPT), [**Video-LLaVA**](https://github.com/PKU-YuanGroup/Video-LLaVA).
364
+ * [**WebVid**](https://github.com/m-bain/webvid), [**Panda-70M**](https://github.com/snap-research/Panda-70M), [**LanguageBind**](https://github.com/PKU-YuanGroup/LanguageBind), [**InternVid**](https://github.com/OpenGVLab/InternVideo/tree/main/Data/InternVid).
365
+ * [**VideoChat2**](https://github.com/OpenGVLab/Ask-Anything/tree/main/video_chat2), [**Valley**](https://github.com/RupertLuo/Valley), [**VTimeLLM**](https://github.com/huangb23/VTimeLLM), [**ShareGPT4V**](https://sharegpt4v.github.io/).
366
+ * [**Magpie**](https://github.com/magpie-align/magpie), [**ALLaVA**](https://github.com/FreedomIntelligence/ALLaVA), [**AVInstruct**](https://github.com/rikeilong/Bay-CAT/tree/main/AVinstruct).
367
+
368
+
369
+ ## 🔒 License
370
+
371
+ This project is released under the Apache 2.0 license as found in the LICENSE file.
372
+ The service is a research preview intended for **non-commercial use ONLY**, subject to the model Licenses of LLaMA and Mistral, Terms of Use of the data generated by OpenAI, and Privacy Practices of ShareGPT. Please get in touch with us if you find any potential violations.
VideoLLaMA2/assets/cat_and_chicken.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f24723064ee27ea8fc7a30b4542601ed03a42952c0d20fe918213cf876bfec4
3
+ size 18956323
VideoLLaMA2/assets/logo.png ADDED

Git LFS Details

  • SHA256: cd9a3a969f931fb23ed371de960ddc589136a937df901b2b08e2750fabf6dd8e
  • Pointer size: 131 Bytes
  • Size of remote file: 504 kB
VideoLLaMA2/assets/pipeline.png ADDED

Git LFS Details

  • SHA256: eeab6d9f13787337b40399427e419506f49b55a4fb4fe40ba91e25618d03eeb0
  • Pointer size: 132 Bytes
  • Size of remote file: 4.38 MB
VideoLLaMA2/assets/sora.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24e5f0ea3353f23225d00efcdf136fa6dc346301fc34082790e2152c80fa0490
3
+ size 14978533
VideoLLaMA2/assets/sora.png ADDED

Git LFS Details

  • SHA256: 6b69de5c87b429c7b1a87de6f9cb3f5ec6aec5f58ab6ab7c0f727a5d0ec259a5
  • Pointer size: 132 Bytes
  • Size of remote file: 1.05 MB
VideoLLaMA2/pyproject.toml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [build-system]
2
+ requires = ["pdm-backend"]
3
+ build-backend = "pdm.backend"
4
+
5
+ [project]
6
+ name = "videollama2"
7
+ version = "1.0"
8
+ authors = [
9
+ {name = "Zesen Cheng", email = "[email protected]"},
10
+ {name = "Hang Zhang"},
11
+ {name = "Xin Li"},
12
+ ]
13
+ description = "Release of VideoLLaMA2"
14
+ readme = "README.md"
15
+ requires-python = ">=3.8"
16
+ classifiers = [
17
+ "Programming Language :: Python :: 3",
18
+ "License :: OSI Approved :: Apache Software License",
19
+ ]
20
+ dependencies = [
21
+ "torch==2.2.0", "torchvision==0.17.0",
22
+ "transformers==4.40.0", "tokenizers==0.19.1",
23
+ "deepspeed==0.13.1", "accelerate==0.26.1",
24
+ "peft==0.4.0", "timm==1.0.3", "numpy==1.24.4",
25
+ "decord==0.6.0", "imageio==2.34.0", "imageio-ffmpeg==0.4.9",
26
+ "moviepy==1.0.3", "opencv-python==4.6.0.66", "pysubs2",
27
+ "scikit-learn==1.2.2", "huggingface_hub==0.23.4", "sentencepiece==0.1.99",
28
+ "shortuuid", "einops==0.6.1", "einops-exts==0.0.4",
29
+ "bitsandbytes==0.43.0", "pydantic>=2.0", "markdown2[all]",
30
+ "gradio==3.50.0", "gradio_client==0.6.1", "httpx==0.24.1",
31
+ "requests", "openai", "uvicorn", "fastapi", "tensorboard", "wandb", "tabulate"
32
+ ]
33
+
34
+ [project.urls]
35
+ "Homepage" = "https://github.com/DAMO-NLP-SG/VideoLLaMA2"
36
+ "Bug Tracker" = "https://github.com/DAMO-NLP-SG/VideoLLaMA2/issues"
37
+
38
+ [tool.pdm.build]
39
+ excludes = ["./.git"]
40
+ package-dir = "."
41
+ includes = ["./videollama2"]
VideoLLaMA2/requirements.txt ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu118
2
+ # basic dependencies
3
+ torch==2.2.0
4
+ torchvision==0.17.0
5
+ transformers==4.40.0
6
+ tokenizers==0.19.1
7
+ deepspeed==0.13.1
8
+ accelerate==0.26.1
9
+ peft==0.4.0
10
+ timm==1.0.3
11
+ numpy==1.24.4
12
+ # data processing
13
+ decord==0.6.0
14
+ imageio==2.34.0
15
+ imageio-ffmpeg==0.4.9
16
+ moviepy==1.0.3
17
+ opencv-python==4.6.0.66
18
+ pysubs2
19
+ # misc
20
+ scikit-learn==1.2.2
21
+ huggingface_hub==0.23.4
22
+ sentencepiece==0.1.99
23
+ shortuuid
24
+ einops==0.6.1
25
+ einops-exts==0.0.4
26
+ bitsandbytes==0.43.0
27
+ pydantic>=2.0
28
+ markdown2[all]
29
+ gradio==3.50.0
30
+ gradio_client==0.6.1
31
+ httpx==0.24.1
32
+ requests
33
+ openai
34
+ uvicorn
35
+ fastapi
36
+ tensorboard
37
+ wandb
38
+ tabulate
39
+ spaces==0.29.2
VideoLLaMA2/scripts/custom/finetune.sh ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Environment Variables
4
+ ARG_WORLD_SIZE=${1:-1}
5
+ ARG_NPROC_PER_NODE=${2:-8}
6
+ ARG_MASTER_ADDR="127.0.0.1"
7
+ ARG_MASTER_PORT=16666
8
+ ARG_RANK=${3:-0}
9
+
10
+ # Multiple conditions
11
+ if [ ! -n "$WORLD_SIZE" ] || [ ! -n "$NPROC_PER_NODE" ]; then
12
+ WORLD_SIZE=$ARG_WORLD_SIZE
13
+ NPROC_PER_NODE=$ARG_NPROC_PER_NODE
14
+ fi
15
+ if [ ! -n "$MASTER_ADDR" ] || [ ! -n "$MASTER_PORT" ] || [ ! -n "$RANK" ]; then
16
+ MASTER_ADDR=$ARG_MASTER_ADDR
17
+ MASTER_PORT=$ARG_MASTER_PORT
18
+ RANK=$ARG_RANK
19
+ fi
20
+
21
+ echo "WORLD_SIZE: $WORLD_SIZE"
22
+ echo "NPROC_PER_NODE: $NPROC_PER_NODE"
23
+
24
+ # Training Arguments
25
+ GLOBAL_BATCH_SIZE=128
26
+ LOCAL_BATCH_SIZE=4
27
+ GRADIENT_ACCUMULATION_STEPS=$[$GLOBAL_BATCH_SIZE/($WORLD_SIZE*$NPROC_PER_NODE*$LOCAL_BATCH_SIZE)]
28
+
29
+ # Log Arguments
30
+ export TRANSFORMERS_OFFLINE=1
31
+ export WANDB_PROJECT=videollama2qwen2_downstream_sft
32
+ RUN_NAME=siglip_tcv35_7b_16f
33
+ DATA_DIR=datasets
34
+ OUTP_DIR=work_dirs
35
+
36
+ torchrun --nnodes $WORLD_SIZE \
37
+ --nproc_per_node $NPROC_PER_NODE \
38
+ --master_addr=$MASTER_ADDR \
39
+ --master_port=$MASTER_PORT \
40
+ --node_rank $RANK \
41
+ videollama2/train.py \
42
+ --deepspeed scripts/zero3.json \
43
+ --model_type videollama2_qwen2 \
44
+ --model_path Qwen/Qwen2-7B-Instruct \
45
+ --vision_tower google/siglip-so400m-patch14-384 \
46
+ --mm_projector_type stc_connector_v35 \
47
+ --pretrain_mm_mlp_adapter DAMO-NLP-SG/VideoLLaMA2.1-7B-16F-Base/mm_projector.bin \
48
+ --data_path ${DATA_DIR}/videollava_sft/videochatgpt_llavaimage_tune.json \
49
+ --data_folder ${DATA_DIR}/videollava_sft/ \
50
+ --mm_vision_select_layer -2 \
51
+ --image_aspect_ratio pad \
52
+ --num_frames 16 \
53
+ --bf16 True \
54
+ --tf32 True \
55
+ --fp16 False \
56
+ --output_dir ${OUTP_DIR}/${WANDB_PROJECT}/finetune_${RUN_NAME} \
57
+ --num_train_epochs 1 \
58
+ --per_device_train_batch_size $LOCAL_BATCH_SIZE \
59
+ --per_device_eval_batch_size 4 \
60
+ --gradient_accumulation_steps $GRADIENT_ACCUMULATION_STEPS \
61
+ --save_strategy "steps" \
62
+ --save_steps 500 \
63
+ --save_total_limit 99 \
64
+ --learning_rate 2e-5 \
65
+ --weight_decay 0. \
66
+ --warmup_ratio 0.03 \
67
+ --lr_scheduler_type "cosine" \
68
+ --logging_steps 1 \
69
+ --model_max_length 2048 \
70
+ --gradient_checkpointing True \
71
+ --dataloader_num_workers 4 \
72
+ --report_to tensorboard \
73
+ --run_name $RUN_NAME \
VideoLLaMA2/scripts/custom/finetune_lora.sh ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Environment Variables
4
+ ARG_WORLD_SIZE=${1:-1}
5
+ ARG_NPROC_PER_NODE=${2:-8}
6
+ ARG_MASTER_ADDR="127.0.0.1"
7
+ ARG_MASTER_PORT=16666
8
+ ARG_RANK=${3:-0}
9
+
10
+ # Multiple conditions
11
+ if [ ! -n "$WORLD_SIZE" ] || [ ! -n "$NPROC_PER_NODE" ]; then
12
+ WORLD_SIZE=$ARG_WORLD_SIZE
13
+ NPROC_PER_NODE=$ARG_NPROC_PER_NODE
14
+ fi
15
+ if [ ! -n "$MASTER_ADDR" ] || [ ! -n "$MASTER_PORT" ] || [ ! -n "$RANK" ]; then
16
+ MASTER_ADDR=$ARG_MASTER_ADDR
17
+ MASTER_PORT=$ARG_MASTER_PORT
18
+ RANK=$ARG_RANK
19
+ fi
20
+
21
+ echo "WORLD_SIZE: $WORLD_SIZE"
22
+ echo "NPROC_PER_NODE: $NPROC_PER_NODE"
23
+
24
+ # Training Arguments
25
+ GLOBAL_BATCH_SIZE=128
26
+ LOCAL_BATCH_SIZE=4
27
+ GRADIENT_ACCUMULATION_STEPS=$[$GLOBAL_BATCH_SIZE/($WORLD_SIZE*$NPROC_PER_NODE*$LOCAL_BATCH_SIZE)]
28
+
29
+ # Log Arguments
30
+ export TRANSFORMERS_OFFLINE=1
31
+ export WANDB_PROJECT=videollama2qwen2_downstream_sft
32
+ RUN_NAME=siglip_tcv35_7b_16f_lora
33
+ DATA_DIR=datasets
34
+ OUTP_DIR=work_dirs
35
+
36
+ torchrun --nnodes $WORLD_SIZE \
37
+ --nproc_per_node $NPROC_PER_NODE \
38
+ --master_addr=$MASTER_ADDR \
39
+ --master_port=$MASTER_PORT \
40
+ --node_rank $RANK \
41
+ videollama2/train.py \
42
+ --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 \
43
+ --deepspeed scripts/zero3.json \
44
+ --model_type videollama2_qwen2 \
45
+ --model_path Qwen/Qwen2-7B-Instruct \
46
+ --vision_tower google/siglip-so400m-patch14-384 \
47
+ --mm_projector_type stc_connector_v35 \
48
+ --pretrain_mm_mlp_adapter DAMO-NLP-SG/VideoLLaMA2.1-7B-16F-Base/mm_projector.bin \
49
+ --data_path ${DATA_DIR}/videollava_sft/videochatgpt_llavaimage_tune.json \
50
+ --data_folder ${DATA_DIR}/videollava_sft/ \
51
+ --mm_vision_select_layer -2 \
52
+ --image_aspect_ratio pad \
53
+ --num_frames 16 \
54
+ --bf16 True \
55
+ --tf32 True \
56
+ --fp16 False \
57
+ --output_dir ${OUTP_DIR}/${WANDB_PROJECT}/finetune_${RUN_NAME} \
58
+ --num_train_epochs 1 \
59
+ --per_device_train_batch_size $LOCAL_BATCH_SIZE \
60
+ --per_device_eval_batch_size 4 \
61
+ --gradient_accumulation_steps $GRADIENT_ACCUMULATION_STEPS \
62
+ --save_strategy "steps" \
63
+ --save_steps 500 \
64
+ --save_total_limit 99 \
65
+ --learning_rate 2e-5 \
66
+ --weight_decay 0. \
67
+ --warmup_ratio 0.03 \
68
+ --lr_scheduler_type "cosine" \
69
+ --logging_steps 1 \
70
+ --model_max_length 2048 \
71
+ --gradient_checkpointing True \
72
+ --dataloader_num_workers 4 \
73
+ --report_to tensorboard \
74
+ --run_name $RUN_NAME \
VideoLLaMA2/scripts/custom/finetune_qlora.sh ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Environment Variables
4
+ ARG_WORLD_SIZE=${1:-1}
5
+ ARG_NPROC_PER_NODE=${2:-8}
6
+ ARG_MASTER_ADDR="127.0.0.1"
7
+ ARG_MASTER_PORT=16666
8
+ ARG_RANK=${3:-0}
9
+
10
+ # Multiple conditions
11
+ if [ ! -n "$WORLD_SIZE" ] || [ ! -n "$NPROC_PER_NODE" ]; then
12
+ WORLD_SIZE=$ARG_WORLD_SIZE
13
+ NPROC_PER_NODE=$ARG_NPROC_PER_NODE
14
+ fi
15
+ if [ ! -n "$MASTER_ADDR" ] || [ ! -n "$MASTER_PORT" ] || [ ! -n "$RANK" ]; then
16
+ MASTER_ADDR=$ARG_MASTER_ADDR
17
+ MASTER_PORT=$ARG_MASTER_PORT
18
+ RANK=$ARG_RANK
19
+ fi
20
+
21
+ echo "WORLD_SIZE: $WORLD_SIZE"
22
+ echo "NPROC_PER_NODE: $NPROC_PER_NODE"
23
+
24
+ # Training Arguments
25
+ GLOBAL_BATCH_SIZE=128
26
+ LOCAL_BATCH_SIZE=4
27
+ GRADIENT_ACCUMULATION_STEPS=$[$GLOBAL_BATCH_SIZE/($WORLD_SIZE*$NPROC_PER_NODE*$LOCAL_BATCH_SIZE)]
28
+
29
+ # Log Arguments
30
+ export TRANSFORMERS_OFFLINE=1
31
+ export WANDB_PROJECT=videollama2qwen2_downstream_sft
32
+ RUN_NAME=siglip_tcv35_7b_16f_qlora
33
+ DATA_DIR=datasets
34
+ OUTP_DIR=work_dirs
35
+
36
+ torchrun --nnodes $WORLD_SIZE \
37
+ --nproc_per_node $NPROC_PER_NODE \
38
+ --master_addr=$MASTER_ADDR \
39
+ --master_port=$MASTER_PORT \
40
+ --node_rank $RANK \
41
+ videollama2/train.py \
42
+ --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 --bits 4 \
43
+ --deepspeed scripts/zero2.json \
44
+ --model_type videollama2_qwen2 \
45
+ --model_path Qwen/Qwen2-7B-Instruct \
46
+ --vision_tower google/siglip-so400m-patch14-384 \
47
+ --mm_projector_type stc_connector_v35 \
48
+ --pretrain_mm_mlp_adapter DAMO-NLP-SG/VideoLLaMA2.1-7B-16F-Base/mm_projector.bin \
49
+ --data_path ${DATA_DIR}/videollava_sft/videochatgpt_llavaimage_tune.json \
50
+ --data_folder ${DATA_DIR}/videollava_sft/ \
51
+ --mm_vision_select_layer -2 \
52
+ --image_aspect_ratio pad \
53
+ --num_frames 16 \
54
+ --bf16 True \
55
+ --tf32 True \
56
+ --fp16 False \
57
+ --output_dir ${OUTP_DIR}/${WANDB_PROJECT}/finetune_${RUN_NAME} \
58
+ --num_train_epochs 1 \
59
+ --per_device_train_batch_size $LOCAL_BATCH_SIZE \
60
+ --per_device_eval_batch_size 4 \
61
+ --gradient_accumulation_steps $GRADIENT_ACCUMULATION_STEPS \
62
+ --save_strategy "steps" \
63
+ --save_steps 500 \
64
+ --save_total_limit 99 \
65
+ --learning_rate 2e-5 \
66
+ --weight_decay 0. \
67
+ --warmup_ratio 0.03 \
68
+ --lr_scheduler_type "cosine" \
69
+ --logging_steps 1 \
70
+ --model_max_length 2048 \
71
+ --gradient_checkpointing True \
72
+ --dataloader_num_workers 4 \
73
+ --report_to tensorboard \
74
+ --run_name $RUN_NAME \
VideoLLaMA2/scripts/eval/eval_video_cap_msvc.sh ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ set -x
2
+
3
+ EVAL_DATA_DIR=eval
4
+ OUTPUT_DIR=eval_output
5
+ CKPT=DAMO-NLP-SG/VideoLLaMA2.1-7B-16F
6
+ CKPT_NAME=$(echo $CKPT | rev | cut -d'/' -f1 | rev)
7
+
8
+ gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
9
+ IFS=',' read -ra GPULIST <<< "$gpu_list"
10
+
11
+ # divide data via the number of GPUs per task
12
+ GPUS_PER_TASK=1
13
+ CHUNKS=$((${#GPULIST[@]}/$GPUS_PER_TASK))
14
+
15
+ output_file=${OUTPUT_DIR}/msvc/answers/${CKPT_NAME}/merge.json
16
+
17
+ # judge if the number of json lines is 0
18
+ if [ ! -f "$output_file" ] || [ $(cat "$output_file" | wc -l) -eq 0 ]; then
19
+ rm -f ${OUTPUT_DIR}/msvc/answers/${CKPT_NAME}/*.json
20
+ fi
21
+
22
+ if [ ! -f "$output_file" ]; then
23
+ for IDX in $(seq 0 $((CHUNKS-1))); do
24
+ # select the GPUs for the task
25
+ gpu_devices=$(IFS=,; echo "${GPULIST[*]:$(($IDX*$GPUS_PER_TASK)):$GPUS_PER_TASK}")
26
+ TRANSFORMERS_OFFLINE=1 CUDA_VISIBLE_DEVICES=${gpu_devices} python3 videollama2/eval/inference_video_cap_msvc.py \
27
+ --model-path ${CKPT} \
28
+ --video-folder ${EVAL_DATA_DIR}/msvc \
29
+ --question-file ${EVAL_DATA_DIR}/msvc/msvc.json \
30
+ --output-file ${OUTPUT_DIR}/msvc/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.json \
31
+ --num-chunks $CHUNKS \
32
+ --chunk-idx $IDX &
33
+ done
34
+
35
+ wait
36
+
37
+ # Clear out the output file if it exists.
38
+ > "$output_file"
39
+
40
+ #Loop through the indices and concatenate each file.
41
+ for IDX in $(seq 0 $((CHUNKS-1))); do
42
+ cat ${OUTPUT_DIR}/msvc/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.json >> "$output_file"
43
+ done
44
+ fi
45
+
46
+
47
+ AZURE_API_KEY=your_key
48
+ AZURE_API_ENDPOINT=your_endpoint
49
+ AZURE_API_DEPLOYNAME=your_deployname
50
+
51
+ python3 videollama2/eval/eval_video_cap_msvc_correctness.py \
52
+ --pred-path $output_file \
53
+ --output-dir ${OUTPUT_DIR}/msvc/answers/${CKPT_NAME}/correctness_gpt \
54
+ --output-json ${OUTPUT_DIR}/msvc/answers/${CKPT_NAME}/correctness_results.json \
55
+ --api-key $AZURE_API_KEY \
56
+ --api-endpoint $AZURE_API_ENDPOINT \
57
+ --api-deployname $AZURE_API_DEPLOYNAME \
58
+ --num-tasks 4 \
59
+
60
+ python3 videollama2/eval/eval_video_cap_msvc_detailedness.py \
61
+ --pred-path $output_file \
62
+ --output-dir ${OUTPUT_DIR}/msvc/answers/${CKPT_NAME}/detailedness_gpt \
63
+ --output-json ${OUTPUT_DIR}/msvc/answers/${CKPT_NAME}/detailedness_results.json \
64
+ --api-key $AZURE_API_KEY \
65
+ --api-endpoint $AZURE_API_ENDPOINT \
66
+ --api-deployname $AZURE_API_DEPLOYNAME \
67
+ --num-tasks 4 \
VideoLLaMA2/scripts/eval/eval_video_mcqa_egoschema.sh ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ set -x
2
+
3
+ EVAL_DATA_DIR=eval
4
+ OUTPUT_DIR=eval_output
5
+ CKPT=DAMO-NLP-SG/VideoLLaMA2.1-7B-16F
6
+ CKPT_NAME=$(echo $CKPT | rev | cut -d'/' -f1 | rev)
7
+
8
+ gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
9
+ IFS=',' read -ra GPULIST <<< "$gpu_list"
10
+
11
+ # divide data via the number of GPUs per task
12
+ GPUS_PER_TASK=1
13
+ CHUNKS=$((${#GPULIST[@]}/$GPUS_PER_TASK))
14
+
15
+ output_file=${OUTPUT_DIR}/egoschema/answers/${CKPT_NAME}/merge.csv
16
+
17
+ if [ ! -f "$output_file" ]; then
18
+ for IDX in $(seq 0 $((CHUNKS-1))); do
19
+ # select the GPUs for the task
20
+ gpu_devices=$(IFS=,; echo "${GPULIST[*]:$(($IDX*$GPUS_PER_TASK)):$GPUS_PER_TASK}")
21
+ TRANSFORMERS_OFFLINE=1 CUDA_VISIBLE_DEVICES=${gpu_devices} python3 videollama2/eval/inference_video_mcqa_egoschema.py \
22
+ --model-path ${CKPT} \
23
+ --video-folder ${EVAL_DATA_DIR}/egoschema/good_clips_git \
24
+ --question-file ${EVAL_DATA_DIR}/egoschema/questions.json \
25
+ --answer-file ${OUTPUT_DIR}/egoschema/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.csv \
26
+ --num-chunks $CHUNKS \
27
+ --chunk-idx $IDX &
28
+ done
29
+
30
+ wait
31
+
32
+ # Clear out the output file if it exists.
33
+ > "$output_file"
34
+
35
+ echo 'q_uid, answer' >> "$output_file"
36
+
37
+ # Loop through the indices and concatenate each file.
38
+ for IDX in $(seq 0 $((CHUNKS-1))); do
39
+ cat ${OUTPUT_DIR}/egoschema/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.csv >> "$output_file"
40
+ done
41
+ fi
VideoLLaMA2/scripts/eval/eval_video_mcqa_mvbench.sh ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ set -x
2
+
3
+ EVAL_DATA_DIR=eval
4
+ OUTPUT_DIR=eval_output
5
+ CKPT=DAMO-NLP-SG/VideoLLaMA2.1-7B-16F
6
+ CKPT_NAME=$(echo $CKPT | rev | cut -d'/' -f1 | rev)
7
+
8
+ gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
9
+ IFS=',' read -ra GPULIST <<< "$gpu_list"
10
+
11
+ # divide data via the number of GPUs per task
12
+ GPUS_PER_TASK=1
13
+ CHUNKS=$((${#GPULIST[@]}/$GPUS_PER_TASK))
14
+
15
+ output_file=${OUTPUT_DIR}/mvbench/answers/${CKPT_NAME}/merge.json
16
+
17
+ # judge if the number of json lines is 0
18
+ if [ ! -f "$output_file" ] || [ $(cat "$output_file" | wc -l) -eq 0 ]; then
19
+ rm -f ${OUTPUT_DIR}/mvbench/answers/${CKPT_NAME}/*.json
20
+ fi
21
+
22
+ if [ ! -f "$output_file" ]; then
23
+ for IDX in $(seq 0 $((CHUNKS-1))); do
24
+ gpu_devices=$(IFS=,; echo "${GPULIST[*]:$(($IDX*$GPUS_PER_TASK)):$GPUS_PER_TASK}")
25
+ TRANSFORMERS_OFFLINE=1 CUDA_VISIBLE_DEVICES=${gpu_devices} python3 videollama2/eval/inference_video_mcqa_mvbench.py \
26
+ --model-path ${CKPT} \
27
+ --video-folder ${EVAL_DATA_DIR}/mvbench/video \
28
+ --question-file ${EVAL_DATA_DIR}/mvbench/json \
29
+ --answer-file ${OUTPUT_DIR}/mvbench/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.json \
30
+ --num-chunks $CHUNKS \
31
+ --chunk-idx $IDX &
32
+ done
33
+
34
+ wait
35
+
36
+ # Clear out the output file if it exists.
37
+ > "$output_file"
38
+
39
+ # Loop through the indices and concatenate each file.
40
+ for IDX in $(seq 0 $((CHUNKS-1))); do
41
+ cat ${OUTPUT_DIR}/mvbench/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.json >> "$output_file"
42
+ done
43
+ fi
44
+
45
+ python3 videollama2/eval/eval_video_mcqa_mvbench.py \
46
+ --pred_path ${output_file} \
VideoLLaMA2/scripts/eval/eval_video_mcqa_perception_test_mcqa.sh ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ set -x
2
+
3
+ EVAL_DATA_DIR=eval
4
+ OUTPUT_DIR=eval_output
5
+ CKPT=DAMO-NLP-SG/VideoLLaMA2.1-7B-16F
6
+ CKPT_NAME=$(echo $CKPT | rev | cut -d'/' -f1 | rev)
7
+
8
+ gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
9
+ IFS=',' read -ra GPULIST <<< "$gpu_list"
10
+
11
+ # divide data via the number of GPUs per task
12
+ GPUS_PER_TASK=1
13
+ CHUNKS=$((${#GPULIST[@]}/$GPUS_PER_TASK))
14
+
15
+ output_file=${OUTPUT_DIR}/perception_test_mcqa/answers/${CKPT_NAME}/merge.json
16
+
17
+ if [ ! -f "$output_file" ]; then
18
+ for IDX in $(seq 0 $((CHUNKS-1))); do
19
+ # select the GPUs for the task
20
+ gpu_devices=$(IFS=,; echo "${GPULIST[*]:$(($IDX*$GPUS_PER_TASK)):$GPUS_PER_TASK}")
21
+ TRANSFORMERS_OFFLINE=1 CUDA_VISIBLE_DEVICES=${gpu_devices} python3 videollama2/eval/inference_video_mcqa_perception_test_mcqa.py \
22
+ --model-path ${CKPT} \
23
+ --video-folder ${EVAL_DATA_DIR}/perception_test_mcqa/videos \
24
+ --question-file ${EVAL_DATA_DIR}/perception_test_mcqa/mc_question_test.json \
25
+ --answer-file ${OUTPUT_DIR}/perception_test_mcqa/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.json \
26
+ --num-chunks $CHUNKS \
27
+ --chunk-idx $IDX &
28
+ done
29
+
30
+ wait
31
+
32
+ # Clear out the output file if it exists.
33
+ > "$output_file"
34
+
35
+ echo "{" >> "$output_file"
36
+
37
+ # Loop through the indices and concatenate each file.
38
+ for IDX in $(seq 0 $((CHUNKS-1))); do
39
+ cat ${OUTPUT_DIR}/perception_test_mcqa/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.json >> "$output_file"
40
+ done
41
+
42
+ sed -i '$s/.$//' $output_file
43
+
44
+ echo "}" >> "$output_file"
45
+ fi
VideoLLaMA2/scripts/eval/eval_video_mcqa_videomme.sh ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ set -x
2
+
3
+ EVAL_DATA_DIR=eval
4
+ OUTPUT_DIR=eval_output
5
+ CKPT=DAMO-NLP-SG/VideoLLaMA2.1-7B-16F
6
+ CKPT_NAME=$(echo $CKPT | rev | cut -d'/' -f1 | rev)
7
+
8
+ gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
9
+ IFS=',' read -ra GPULIST <<< "$gpu_list"
10
+
11
+ # divide data via the number of GPUs per task
12
+ GPUS_PER_TASK=1
13
+ CHUNKS=$((${#GPULIST[@]}/$GPUS_PER_TASK))
14
+
15
+ output_file=${OUTPUT_DIR}/videomme/answers/${CKPT_NAME}/merge.json
16
+ output_sub_file=${OUTPUT_DIR}/videomme/answers/${CKPT_NAME}/merge_sub.json
17
+
18
+ # judge if the number of json lines is 0
19
+ if [ ! -f "$output_file" ] || [ $(cat "$output_file" | wc -l) -eq 0 ]; then
20
+ rm -f ${OUTPUT_DIR}/videomme/answers/${CKPT_NAME}/*.json
21
+ fi
22
+
23
+
24
+ if [ ! -f "$output_file" ]; then
25
+ for IDX in $(seq 0 $((CHUNKS-1))); do
26
+ # select the GPUs for the task
27
+ gpu_devices=$(IFS=,; echo "${GPULIST[*]:$(($IDX*$GPUS_PER_TASK)):$GPUS_PER_TASK}")
28
+ TRANSFORMERS_OFFLINE=1 CUDA_VISIBLE_DEVICES=${gpu_devices} python3 videollama2/eval/inference_video_mcqa_videomme.py \
29
+ --model-path ${CKPT} \
30
+ --video-folder ${EVAL_DATA_DIR}/videomme/videos \
31
+ --subtitle-folder ${EVAL_DATA_DIR}/videomme/subtitles \
32
+ --question-file ${EVAL_DATA_DIR}/videomme/test-00000-of-00001.parquet \
33
+ --answer-file ${OUTPUT_DIR}/videomme/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.json \
34
+ --num-chunks $CHUNKS \
35
+ --chunk-idx $IDX &
36
+ done
37
+
38
+ wait
39
+
40
+ # Clear out the output file if it exists.
41
+ > "$output_file"
42
+
43
+ echo "[" >> "$output_file"
44
+
45
+ #Loop through the indices and concatenate each file.
46
+ for IDX in $(seq 0 $((CHUNKS-1))); do
47
+ cat ${OUTPUT_DIR}/videomme/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.json >> "$output_file"
48
+ done
49
+
50
+ sed -i '$s/.$//' $output_file
51
+
52
+ echo "]" >> "$output_file"
53
+
54
+ # Clear out the output file if it exists.
55
+ > "$output_sub_file"
56
+
57
+ echo "[" >> "$output_sub_file"
58
+
59
+ #Loop through the indices and concatenate each file.
60
+ for IDX in $(seq 0 $((CHUNKS-1))); do
61
+ cat ${OUTPUT_DIR}/videomme/answers/${CKPT_NAME}/${CHUNKS}_${IDX}_sub.json >> "$output_sub_file"
62
+ done
63
+
64
+ sed -i '$s/.$//' $output_sub_file
65
+
66
+ echo "]" >> "$output_sub_file"
67
+ fi
68
+
69
+
70
+ python videollama2/eval/eval_video_mcqa_videomme.py \
71
+ --results_file $output_file \
72
+ --video_duration_type "short,medium,long" \
73
+ --return_categories_accuracy \
74
+ --return_sub_categories_accuracy \
75
+ --return_task_types_accuracy \
76
+ --skip_missing \
77
+
78
+ python videollama2/eval/eval_video_mcqa_videomme.py \
79
+ --results_file $output_sub_file \
80
+ --video_duration_type "short,medium,long" \
81
+ --return_categories_accuracy \
82
+ --return_sub_categories_accuracy \
83
+ --return_task_types_accuracy \
84
+ --skip_missing \
VideoLLaMA2/scripts/eval/eval_video_oqa_activitynet.sh ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ set -x
2
+
3
+ EVAL_DATA_DIR=eval
4
+ OUTPUT_DIR=eval_output
5
+ CKPT=DAMO-NLP-SG/VideoLLaMA2.1-7B-16F
6
+ CKPT_NAME=$(echo $CKPT | rev | cut -d'/' -f1 | rev)
7
+
8
+ gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
9
+ IFS=',' read -ra GPULIST <<< "$gpu_list"
10
+
11
+ # divide data via the number of GPUs per task
12
+ GPUS_PER_TASK=1
13
+ CHUNKS=$((${#GPULIST[@]}/$GPUS_PER_TASK))
14
+
15
+ output_file=${OUTPUT_DIR}/Activitynet_Zero_Shot_QA/answers/${CKPT_NAME}/merge.json
16
+
17
+ if [ ! -f "$output_file" ]; then
18
+ for IDX in $(seq 0 $((CHUNKS-1))); do
19
+ # select the GPUs for the task
20
+ gpu_devices=$(IFS=,; echo "${GPULIST[*]:$(($IDX*$GPUS_PER_TASK)):$GPUS_PER_TASK}")
21
+ TRANSFORMERS_OFFLINE=1 CUDA_VISIBLE_DEVICES=${gpu_devices} python3 videollama2/eval/inference_video_oqa_activitynet.py \
22
+ --model-path ${CKPT} \
23
+ --video-folder ${EVAL_DATA_DIR}/Activitynet_Zero_Shot_QA/all_test \
24
+ --question-file ${EVAL_DATA_DIR}/Activitynet_Zero_Shot_QA/test_q.json \
25
+ --answer-file ${EVAL_DATA_DIR}/Activitynet_Zero_Shot_QA/test_a.json \
26
+ --output-file ${OUTPUT_DIR}/Activitynet_Zero_Shot_QA/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.json \
27
+ --num-chunks $CHUNKS \
28
+ --chunk-idx $IDX &
29
+ done
30
+
31
+ wait
32
+
33
+ # Clear out the output file if it exists.
34
+ > "$output_file"
35
+
36
+ #Loop through the indices and concatenate each file.
37
+ for IDX in $(seq 0 $((CHUNKS-1))); do
38
+ cat ${OUTPUT_DIR}/Activitynet_Zero_Shot_QA/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.json >> "$output_file"
39
+ done
40
+ fi
41
+
42
+
43
+ AZURE_API_KEY=your_key
44
+ AZURE_API_ENDPOINT=your_endpoint
45
+ AZURE_API_DEPLOYNAME=your_deployname
46
+
47
+ python3 videollama2/eval/eval_video_oqa_activitynet.py \
48
+ --pred-path ${output_file} \
49
+ --output-dir ${OUTPUT_DIR}/Activitynet_Zero_Shot_QA/answers/${CKPT_NAME}/gpt \
50
+ --output-json ${OUTPUT_DIR}/Activitynet_Zero_Shot_QA/answers/${CKPT_NAME}/results.json \
51
+ --api-key $AZURE_API_KEY \
52
+ --api-endpoint $AZURE_API_ENDPOINT \
53
+ --api-deployname $AZURE_API_DEPLOYNAME \
54
+ --num-tasks 4
VideoLLaMA2/scripts/eval/eval_video_oqa_msvd.sh ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ set -x
2
+
3
+ EVAL_DATA_DIR=eval
4
+ OUTPUT_DIR=eval_output
5
+ CKPT=DAMO-NLP-SG/VideoLLaMA2.1-7B-16F
6
+ CKPT_NAME=$(echo $CKPT | rev | cut -d'/' -f1 | rev)
7
+
8
+ gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
9
+ IFS=',' read -ra GPULIST <<< "$gpu_list"
10
+
11
+ # divide data via the number of GPUs per task
12
+ GPUS_PER_TASK=1
13
+ CHUNKS=$((${#GPULIST[@]}/$GPUS_PER_TASK))
14
+
15
+ output_file=${OUTPUT_DIR}/MSVD_Zero_Shot_QA/answers/${CKPT_NAME}/merge.json
16
+
17
+ if [ ! -f "$output_file" ]; then
18
+ for IDX in $(seq 0 $((CHUNKS-1))); do
19
+ # select the GPUs for the task
20
+ gpu_devices=$(IFS=,; echo "${GPULIST[*]:$(($IDX*$GPUS_PER_TASK)):$GPUS_PER_TASK}")
21
+ TRANSFORMERS_OFFLINE=1 CUDA_VISIBLE_DEVICES=${gpu_devices} python3 videollama2/eval/inference_video_oqa_activitynet.py \
22
+ --model-path ${CKPT} \
23
+ --video-folder ${EVAL_DATA_DIR}/MSVD_Zero_Shot_QA/videos \
24
+ --question-file ${EVAL_DATA_DIR}/MSVD_Zero_Shot_QA/test_q.json \
25
+ --answer-file ${EVAL_DATA_DIR}/MSVD_Zero_Shot_QA/test_a.json \
26
+ --output-file ${OUTPUT_DIR}/MSVD_Zero_Shot_QA/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.json \
27
+ --num-chunks $CHUNKS \
28
+ --chunk-idx $IDX &
29
+ done
30
+
31
+ wait
32
+
33
+ # Clear out the output file if it exists.
34
+ > "$output_file"
35
+
36
+ #Loop through the indices and concatenate each file.
37
+ for IDX in $(seq 0 $((CHUNKS-1))); do
38
+ cat ${OUTPUT_DIR}/MSVD_Zero_Shot_QA/answers/${CKPT_NAME}/${CHUNKS}_${IDX}.json >> "$output_file"
39
+ done
40
+ fi
41
+
42
+
43
+ AZURE_API_KEY=your_key
44
+ AZURE_API_ENDPOINT=your_endpoint
45
+ AZURE_API_DEPLOYNAME=your_deployname
46
+
47
+ python3 videollama2/eval/eval_video_oqa_activitynet.py \
48
+ --pred-path ${output_file} \
49
+ --output-dir ${OUTPUT_DIR}/MSVD_Zero_Shot_QA/answers/${CKPT_NAME}/gpt \
50
+ --output-json ${OUTPUT_DIR}/MSVD_Zero_Shot_QA/answers/${CKPT_NAME}/results.json \
51
+ --api-key $AZURE_API_KEY \
52
+ --api-endpoint $AZURE_API_ENDPOINT \
53
+ --api-deployname $AZURE_API_DEPLOYNAME \
54
+ --num-tasks 4
VideoLLaMA2/scripts/eval/eval_video_oqa_vcgpt_1_correctness.sh ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ set -x
2
+
3
+ EVAL_DATA_DIR=eval
4
+ OUTPUT_DIR=eval_output
5
+ CKPT=DAMO-NLP-SG/VideoLLaMA2.1-7B-16F
6
+ CKPT_NAME=$(echo $CKPT | rev | cut -d'/' -f1 | rev)
7
+
8
+ gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
9
+ IFS=',' read -ra GPULIST <<< "$gpu_list"
10
+
11
+ # divide data via the number of GPUs per task
12
+ GPUS_PER_TASK=1
13
+ CHUNKS=$((${#GPULIST[@]}/$GPUS_PER_TASK))
14
+
15
+ output_file=${OUTPUT_DIR}/videochatgpt_gen/answers/correctness/${CKPT_NAME}/merge.json
16
+
17
+ if [ ! -f "$output_file" ]; then
18
+ for IDX in $(seq 0 $((CHUNKS-1))); do
19
+ # select the GPUs for the task
20
+ gpu_devices=$(IFS=,; echo "${GPULIST[*]:$(($IDX*$GPUS_PER_TASK)):$GPUS_PER_TASK}")
21
+ TRANSFORMERS_OFFLINE=1 CUDA_VISIBLE_DEVICES=${gpu_devices} python3 videollama2/eval/inference_video_oqa_vcgpt_general.py \
22
+ --model-path ${CKPT} \
23
+ --video-folder ${EVAL_DATA_DIR}/videochatgpt_gen/Test_Videos \
24
+ --question-file ${EVAL_DATA_DIR}/videochatgpt_gen/generic_qa.json \
25
+ --answer-file ${OUTPUT_DIR}/videochatgpt_gen/answers/correctness/${CKPT_NAME}/${CHUNKS}_${IDX}.json \
26
+ --num-chunks $CHUNKS \
27
+ --chunk-idx $IDX &
28
+ done
29
+
30
+ wait
31
+
32
+ # Clear out the output file if it exists.
33
+ > "$output_file"
34
+
35
+ #Loop through the indices and concatenate each file.
36
+ for IDX in $(seq 0 $((CHUNKS-1))); do
37
+ cat ${OUTPUT_DIR}/videochatgpt_gen/answers/correctness/${CKPT_NAME}/${CHUNKS}_${IDX}.json >> "$output_file"
38
+ done
39
+
40
+ mkdir -p ${OUTPUT_DIR}/videochatgpt_gen/answers/detail/${CKPT_NAME}
41
+ mkdir -p ${OUTPUT_DIR}/videochatgpt_gen/answers/context/${CKPT_NAME}
42
+ cp ${output_file} ${OUTPUT_DIR}/videochatgpt_gen/answers/detail/${CKPT_NAME}/merge.json
43
+ cp ${output_file} ${OUTPUT_DIR}/videochatgpt_gen/answers/context/${CKPT_NAME}/merge.json
44
+ fi
45
+
46
+
47
+ AZURE_API_KEY=your_key
48
+ AZURE_API_ENDPOINT=your_endpoint
49
+ AZURE_API_DEPLOYNAME=your_deployname
50
+
51
+ python3 videollama2/eval/eval_video_oqa_vcgpt_1_correctness.py \
52
+ --pred-path ${output_file} \
53
+ --output-dir ${OUTPUT_DIR}/videochatgpt_gen/answers/correctness/${CKPT_NAME}/gpt \
54
+ --output-json ${OUTPUT_DIR}/videochatgpt_gen/answers/correctness/${CKPT_NAME}/results.json \
55
+ --api-key $AZURE_API_KEY \
56
+ --api-endpoint $AZURE_API_ENDPOINT \
57
+ --api-deployname $AZURE_API_DEPLOYNAME \
58
+ --num-tasks 4
VideoLLaMA2/scripts/eval/eval_video_oqa_vcgpt_2_detail.sh ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ set -x
2
+
3
+ EVAL_DATA_DIR=eval
4
+ OUTPUT_DIR=eval_output
5
+ CKPT=DAMO-NLP-SG/VideoLLaMA2.1-7B-16F
6
+ CKPT_NAME=$(echo $CKPT | rev | cut -d'/' -f1 | rev)
7
+
8
+ gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
9
+ IFS=',' read -ra GPULIST <<< "$gpu_list"
10
+
11
+ # divide data via the number of GPUs per task
12
+ GPUS_PER_TASK=1
13
+ CHUNKS=$((${#GPULIST[@]}/$GPUS_PER_TASK))
14
+
15
+ output_file=${OUTPUT_DIR}/videochatgpt_gen/answers/detail/${CKPT_NAME}/merge.json
16
+
17
+ if [ ! -f "$output_file" ]; then
18
+ for IDX in $(seq 0 $((CHUNKS-1))); do
19
+ # select the GPUs for the task
20
+ gpu_devices=$(IFS=,; echo "${GPULIST[*]:$(($IDX*$GPUS_PER_TASK)):$GPUS_PER_TASK}")
21
+ TRANSFORMERS_OFFLINE=1 CUDA_VISIBLE_DEVICES=${gpu_devices} python3 videollama2/eval/run_inference_video_qa_gpt_general.py \
22
+ --model-path ${CKPT} \
23
+ --video-folder ${EVAL_DATA_DIR}/videochatgpt_gen/Test_Videos \
24
+ --question-file ${EVAL_DATA_DIR}/videochatgpt_gen/generic_qa.json \
25
+ --answer-file ${OUTPUT_DIR}/videochatgpt_gen/answers/detail/${CKPT_NAME}/${CHUNKS}_${IDX}.json \
26
+ --num-chunks $CHUNKS \
27
+ --chunk-idx $IDX &
28
+ done
29
+
30
+ wait
31
+
32
+ # Clear out the output file if it exists.
33
+ > "$output_file"
34
+
35
+ #Loop through the indices and concatenate each file.
36
+ for IDX in $(seq 0 $((CHUNKS-1))); do
37
+ cat ${OUTPUT_DIR}/videochatgpt_gen/answers/detail/${CKPT_NAME}/${CHUNKS}_${IDX}.json >> "$output_file"
38
+ done
39
+
40
+ mkdir -p ${OUTPUT_DIR}/videochatgpt_gen/answers/correctness/${CKPT_NAME}
41
+ mkdir -p ${OUTPUT_DIR}/videochatgpt_gen/answers/context/${CKPT_NAME}
42
+ cp ${output_file} ${OUTPUT_DIR}/videochatgpt_gen/answers/correctness/${CKPT_NAME}/merge.json
43
+ cp ${output_file} ${OUTPUT_DIR}/videochatgpt_gen/answers/context/${CKPT_NAME}/merge.json
44
+ fi
45
+
46
+
47
+ AZURE_API_KEY=your_key
48
+ AZURE_API_ENDPOINT=your_endpoint
49
+ AZURE_API_DEPLOYNAME=your_deployname
50
+
51
+ python3 videollama2/eval/eval_video_oqa_vcgpt_2_detailed_orientation.py \
52
+ --pred-path ${output_file} \
53
+ --output-dir ${OUTPUT_DIR}/videochatgpt_gen/answers/detail/${CKPT_NAME}/gpt \
54
+ --output-json ${OUTPUT_DIR}/videochatgpt_gen/answers/detail/${CKPT_NAME}/results.json \
55
+ --api-key $AZURE_API_KEY \
56
+ --api-endpoint $AZURE_API_ENDPOINT \
57
+ --api-deployname $AZURE_API_DEPLOYNAME \
58
+ --num-tasks 4
VideoLLaMA2/scripts/eval/eval_video_oqa_vcgpt_3_context.sh ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ set -x
2
+
3
+ EVAL_DATA_DIR=eval
4
+ OUTPUT_DIR=eval_output
5
+ CKPT=DAMO-NLP-SG/VideoLLaMA2.1-7B-16F
6
+ CKPT_NAME=$(echo $CKPT | rev | cut -d'/' -f1 | rev)
7
+
8
+ gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
9
+ IFS=',' read -ra GPULIST <<< "$gpu_list"
10
+
11
+ # divide data via the number of GPUs per task
12
+ GPUS_PER_TASK=1
13
+ CHUNKS=$((${#GPULIST[@]}/$GPUS_PER_TASK))
14
+
15
+ output_file=${OUTPUT_DIR}/videochatgpt_gen/answers/context/${CKPT_NAME}/merge.json
16
+
17
+ if [ ! -f "$output_file" ]; then
18
+ for IDX in $(seq 0 $((CHUNKS-1))); do
19
+ # select the GPUs for the task
20
+ gpu_devices=$(IFS=,; echo "${GPULIST[*]:$(($IDX*$GPUS_PER_TASK)):$GPUS_PER_TASK}")
21
+ TRANSFORMERS_OFFLINE=1 CUDA_VISIBLE_DEVICES=${gpu_devices} python3 videollama2/eval/run_inference_video_qa_gpt_general.py \
22
+ --model-path ${CKPT} \
23
+ --video-folder ${EVAL_DATA_DIR}/videochatgpt_gen/Test_Videos \
24
+ --question-file ${EVAL_DATA_DIR}/videochatgpt_gen/generic_qa.json \
25
+ --answer-file ${OUTPUT_DIR}/videochatgpt_gen/answers/detail/${CKPT_NAME}/${CHUNKS}_${IDX}.json \
26
+ --num-chunks $CHUNKS \
27
+ --chunk-idx $IDX &
28
+ done
29
+
30
+ wait
31
+
32
+ # Clear out the output file if it exists.
33
+ > "$output_file"
34
+
35
+ #Loop through the indices and concatenate each file.
36
+ for IDX in $(seq 0 $((CHUNKS-1))); do
37
+ cat ${OUTPUT_DIR}/videochatgpt_gen/answers/context/${CKPT_NAME}/${CHUNKS}_${IDX}.json >> "$output_file"
38
+ done
39
+
40
+ mkdir -p ${OUTPUT_DIR}/videochatgpt_gen/answers/correctness/${CKPT_NAME}
41
+ mkdir -p ${OUTPUT_DIR}/videochatgpt_gen/answers/detail/${CKPT_NAME}
42
+ cp ${output_file} ${OUTPUT_DIR}/videochatgpt_gen/answers/correctness/${CKPT_NAME}/merge.json
43
+ cp ${output_file} ${OUTPUT_DIR}/videochatgpt_gen/answers/detail/${CKPT_NAME}/merge.json
44
+ fi
45
+
46
+
47
+ AZURE_API_KEY=your_key
48
+ AZURE_API_ENDPOINT=your_endpoint
49
+ AZURE_API_DEPLOYNAME=your_deployname
50
+
51
+ python3 videollama2/eval/eval_video_oqa_vcgpt_3_context.py \
52
+ --pred-path ${output_file} \
53
+ --output-dir ${OUTPUT_DIR}/videochatgpt_gen/answers/context/${CKPT_NAME}/gpt \
54
+ --output-json ${OUTPUT_DIR}/videochatgpt_gen/answers/context/${CKPT_NAME}/results.json \
55
+ --api-key $AZURE_API_KEY \
56
+ --api-endpoint $AZURE_API_ENDPOINT \
57
+ --api-deployname $AZURE_API_DEPLOYNAME \
58
+ --num-tasks 4
VideoLLaMA2/scripts/eval/eval_video_oqa_vcgpt_4_temporal.sh ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ set -x
2
+
3
+ EVAL_DATA_DIR=eval
4
+ OUTPUT_DIR=eval_output
5
+ CKPT=DAMO-NLP-SG/VideoLLaMA2.1-7B-16F
6
+ CKPT_NAME=$(echo $CKPT | rev | cut -d'/' -f1 | rev)
7
+
8
+ gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
9
+ IFS=',' read -ra GPULIST <<< "$gpu_list"
10
+
11
+ # divide data via the number of GPUs per task
12
+ GPUS_PER_TASK=1
13
+ CHUNKS=$((${#GPULIST[@]}/$GPUS_PER_TASK))
14
+
15
+ output_file=${OUTPUT_DIR}/videochatgpt_gen/answers/temporal/${CKPT_NAME}/merge.json
16
+
17
+ # if output_file not exists then inference
18
+ if [ ! -f "$output_file" ]; then
19
+ for IDX in $(seq 0 $((CHUNKS-1))); do
20
+ # select the GPUs for the task
21
+ gpu_devices=$(IFS=,; echo "${GPULIST[*]:$(($IDX*$GPUS_PER_TASK)):$GPUS_PER_TASK}")
22
+ TRANSFORMERS_OFFLINE=1 CUDA_VISIBLE_DEVICES=${gpu_devices} python3 videollama2/eval/inference_video_oqa_vcgpt_general.py \
23
+ --model-path ${CKPT} \
24
+ --video-folder ${EVAL_DATA_DIR}/videochatgpt_gen/Test_Videos \
25
+ --question-file ${EVAL_DATA_DIR}/videochatgpt_gen/temporal_qa.json \
26
+ --answer-file ${OUTPUT_DIR}/videochatgpt_gen/answers/temporal/${CKPT_NAME}/${CHUNKS}_${IDX}.json \
27
+ --num-chunks $CHUNKS \
28
+ --chunk-idx $IDX &
29
+ done
30
+
31
+ wait
32
+
33
+ # Clear out the output file if it exists.
34
+ > "$output_file"
35
+
36
+ #Loop through the indices and concatenate each file.
37
+ for IDX in $(seq 0 $((CHUNKS-1))); do
38
+ cat ${OUTPUT_DIR}/videochatgpt_gen/answers/temporal/${CKPT_NAME}/${CHUNKS}_${IDX}.json >> "$output_file"
39
+ done
40
+ fi
41
+
42
+
43
+ AZURE_API_KEY=your_key
44
+ AZURE_API_ENDPOINT=your_endpoint
45
+ AZURE_API_DEPLOYNAME=your_deployname
46
+
47
+ python3 videollama2/eval/eval_video_oqa_vcgpt_4_temporal.py \
48
+ --pred-path ${output_file} \
49
+ --output-dir ${OUTPUT_DIR}/videochatgpt_gen/answers/temporal/${CKPT_NAME}/gpt \
50
+ --output-json ${OUTPUT_DIR}/videochatgpt_gen/answers/temporal/${CKPT_NAME}/results.json \
51
+ --api-key $AZURE_API_KEY \
52
+ --api-endpoint $AZURE_API_ENDPOINT \
53
+ --api-deployname $AZURE_API_DEPLOYNAME \
54
+ --num-tasks 4
VideoLLaMA2/scripts/eval/eval_video_oqa_vcgpt_5_consistency.sh ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ set -x
2
+
3
+ EVAL_DATA_DIR=eval
4
+ OUTPUT_DIR=eval_output
5
+ CKPT=DAMO-NLP-SG/VideoLLaMA2.1-7B-16F
6
+ CKPT_NAME=$(echo $CKPT | rev | cut -d'/' -f1 | rev)
7
+
8
+ gpu_list="${CUDA_VISIBLE_DEVICES:-0}"
9
+ IFS=',' read -ra GPULIST <<< "$gpu_list"
10
+
11
+ # divide data via the number of GPUs per task
12
+ GPUS_PER_TASK=1
13
+ CHUNKS=$((${#GPULIST[@]}/$GPUS_PER_TASK))
14
+
15
+ output_file=${OUTPUT_DIR}/videochatgpt_gen/answers/consistency/${CKPT_NAME}/merge.json
16
+
17
+ # if output_file not exists then inference
18
+ if [ ! -f "$output_file" ]; then
19
+ for IDX in $(seq 0 $((CHUNKS-1))); do
20
+ # select the GPUs for the task
21
+ gpu_devices=$(IFS=,; echo "${GPULIST[*]:$(($IDX*$GPUS_PER_TASK)):$GPUS_PER_TASK}")
22
+ TRANSFORMERS_OFFLINE=1 CUDA_VISIBLE_DEVICES=${gpu_devices} python3 videollama2/eval/inference_video_oqa_vcgpt_consistency.py \
23
+ --model-path ${CKPT} \
24
+ --video-folder ${EVAL_DATA_DIR}/videochatgpt_gen/Test_Videos \
25
+ --question-file ${EVAL_DATA_DIR}/videochatgpt_gen/consistency_qa.json \
26
+ --answer-file ${OUTPUT_DIR}/videochatgpt_gen/answers/consistency/${CKPT_NAME}/${CHUNKS}_${IDX}.json \
27
+ --num-chunks $CHUNKS \
28
+ --chunk-idx $IDX &
29
+ done
30
+
31
+ wait
32
+
33
+ # Clear out the output file if it exists.
34
+ > "$output_file"
35
+
36
+ #Loop through the indices and concatenate each file.
37
+ for IDX in $(seq 0 $((CHUNKS-1))); do
38
+ cat ${OUTPUT_DIR}/videochatgpt_gen/answers/consistency/${CKPT_NAME}/${CHUNKS}_${IDX}.json >> "$output_file"
39
+ done
40
+ fi
41
+
42
+
43
+ AZURE_API_KEY=your_key
44
+ AZURE_API_ENDPOINT=your_endpoint
45
+ AZURE_API_DEPLOYNAME=your_deployname
46
+
47
+ python3 videollama2/eval/eval_video_oqa_vcgpt_5_consistency.py \
48
+ --pred-path ${output_file} \
49
+ --output-dir ${OUTPUT_DIR}/videochatgpt_gen/answers/consistency/${CKPT_NAME}/gpt \
50
+ --output-json ${OUTPUT_DIR}/videochatgpt_gen/answers/consistency/${CKPT_NAME}/results.json \
51
+ --api-key $AZURE_API_KEY \
52
+ --api-endpoint $AZURE_API_ENDPOINT \
53
+ --api-deployname $AZURE_API_DEPLOYNAME \
54
+ --num-tasks 4
VideoLLaMA2/scripts/vllava/finetune.sh ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Environment Variables
4
+ ARG_WORLD_SIZE=${1:-1}
5
+ ARG_NPROC_PER_NODE=${2:-8}
6
+ ARG_MASTER_ADDR="127.0.0.1"
7
+ ARG_MASTER_PORT=16666
8
+ ARG_RANK=${3:-0}
9
+
10
+ # Multiple conditions
11
+ if [ ! -n "$WORLD_SIZE" ] || [ ! -n "$NPROC_PER_NODE" ]; then
12
+ WORLD_SIZE=$ARG_WORLD_SIZE
13
+ NPROC_PER_NODE=$ARG_NPROC_PER_NODE
14
+ fi
15
+ if [ ! -n "$MASTER_ADDR" ] || [ ! -n "$MASTER_PORT" ] || [ ! -n "$RANK" ]; then
16
+ MASTER_ADDR=$ARG_MASTER_ADDR
17
+ MASTER_PORT=$ARG_MASTER_PORT
18
+ RANK=$ARG_RANK
19
+ fi
20
+
21
+ echo "WORLD_SIZE: $WORLD_SIZE"
22
+ echo "NPROC_PER_NODE: $NPROC_PER_NODE"
23
+
24
+ # Training Arguments
25
+ GLOBAL_BATCH_SIZE=128
26
+ LOCAL_BATCH_SIZE=4
27
+ GRADIENT_ACCUMULATION_STEPS=$[$GLOBAL_BATCH_SIZE/($WORLD_SIZE*$NPROC_PER_NODE*$LOCAL_BATCH_SIZE)]
28
+
29
+ # Log Arguments
30
+ export TRANSFORMERS_OFFLINE=1
31
+ export WANDB_PROJECT=videollama2qwen2_vllava
32
+ RUN_NAME=siglip_tcv35_7b_16f
33
+ DATA_DIR=datasets
34
+ OUTP_DIR=work_dirs
35
+
36
+ torchrun --nnodes $WORLD_SIZE \
37
+ --nproc_per_node $NPROC_PER_NODE \
38
+ --master_addr=$MASTER_ADDR \
39
+ --master_port=$MASTER_PORT \
40
+ --node_rank $RANK \
41
+ videollama2/train.py \
42
+ --deepspeed scripts/zero3.json \
43
+ --model_type videollama2_qwen2 \
44
+ --model_path Qwen/Qwen2-7B-Instruct \
45
+ --vision_tower google/siglip-so400m-patch14-384 \
46
+ --mm_projector_type stc_connector_v35 \
47
+ --pretrain_mm_mlp_adapter ${OUTP_DIR}/${WANDB_PROJECT}/pretrain_${RUN_NAME}/mm_projector.bin \
48
+ --data_path ${DATA_DIR}/videollava_sft/videochatgpt_llavaimage_tune.json \
49
+ --data_folder ${DATA_DIR}/videollava_sft/ \
50
+ --mm_vision_select_layer -2 \
51
+ --image_aspect_ratio pad \
52
+ --num_frames 16 \
53
+ --bf16 True \
54
+ --tf32 True \
55
+ --fp16 False \
56
+ --output_dir ${OUTP_DIR}/${WANDB_PROJECT}/finetune_${RUN_NAME} \
57
+ --num_train_epochs 1 \
58
+ --per_device_train_batch_size $LOCAL_BATCH_SIZE \
59
+ --per_device_eval_batch_size 4 \
60
+ --gradient_accumulation_steps $GRADIENT_ACCUMULATION_STEPS \
61
+ --save_strategy "steps" \
62
+ --save_steps 500 \
63
+ --save_total_limit 99 \
64
+ --learning_rate 2e-5 \
65
+ --weight_decay 0. \
66
+ --warmup_ratio 0.03 \
67
+ --lr_scheduler_type "cosine" \
68
+ --logging_steps 1 \
69
+ --model_max_length 2048 \
70
+ --gradient_checkpointing True \
71
+ --dataloader_num_workers 4 \
72
+ --report_to tensorboard \
73
+ --run_name $RUN_NAME \
VideoLLaMA2/scripts/vllava/pretrain.sh ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Environment Variables
4
+ ARG_WORLD_SIZE=${1:-1}
5
+ ARG_NPROC_PER_NODE=${2:-8}
6
+ ARG_MASTER_ADDR="127.0.0.1"
7
+ ARG_MASTER_PORT=16666
8
+ ARG_RANK=${3:-0}
9
+
10
+ # Multiple conditions
11
+ if [ ! -n "$WORLD_SIZE" ] || [ ! -n "$NPROC_PER_NODE" ]; then
12
+ WORLD_SIZE=$ARG_WORLD_SIZE
13
+ NPROC_PER_NODE=$ARG_NPROC_PER_NODE
14
+ fi
15
+ if [ ! -n "$MASTER_ADDR" ] || [ ! -n "$MASTER_PORT" ] || [ ! -n "$RANK" ]; then
16
+ MASTER_ADDR=$ARG_MASTER_ADDR
17
+ MASTER_PORT=$ARG_MASTER_PORT
18
+ RANK=$ARG_RANK
19
+ fi
20
+
21
+ echo "WORLD_SIZE: $WORLD_SIZE"
22
+ echo "NPROC_PER_NODE: $NPROC_PER_NODE"
23
+
24
+ # Training Arguments
25
+ GLOBAL_BATCH_SIZE=256
26
+ LOCAL_BATCH_SIZE=8
27
+ GRADIENT_ACCUMULATION_STEPS=$[$GLOBAL_BATCH_SIZE/($WORLD_SIZE*$NPROC_PER_NODE*$LOCAL_BATCH_SIZE)]
28
+
29
+ # Log Arguments
30
+ export TRANSFORMERS_OFFLINE=1
31
+ export WANDB_PROJECT=videollama2qwen2_vllava
32
+ RUN_NAME=siglip_tcv35_7b_16f
33
+ DATA_DIR=datasets
34
+ OUTP_DIR=work_dirs
35
+
36
+ torchrun --nnodes $WORLD_SIZE \
37
+ --nproc_per_node $NPROC_PER_NODE \
38
+ --master_addr=$MASTER_ADDR \
39
+ --master_port=$MASTER_PORT \
40
+ --node_rank $RANK \
41
+ videollama2/train.py \
42
+ --deepspeed scripts/zero3.json \
43
+ --model_type videollama2_qwen2 \
44
+ --model_path Qwen/Qwen2-7B-Instruct \
45
+ --vision_tower google/siglip-so400m-patch14-384 \
46
+ --mm_projector_type stc_connector_v35 \
47
+ --tune_mm_mlp_adapter True \
48
+ --data_path ${DATA_DIR}/videollava_pt/valley_llavaimage.json \
49
+ --data_folder ${DATA_DIR}/videollava_pt/ \
50
+ --mm_vision_select_layer -2 \
51
+ --num_frames 16 \
52
+ --bf16 True \
53
+ --tf32 True \
54
+ --fp16 False \
55
+ --output_dir ${OUTP_DIR}/${WANDB_PROJECT}/pretrain_${RUN_NAME} \
56
+ --num_train_epochs 1 \
57
+ --per_device_train_batch_size $LOCAL_BATCH_SIZE \
58
+ --per_device_eval_batch_size 4 \
59
+ --gradient_accumulation_steps $GRADIENT_ACCUMULATION_STEPS \
60
+ --evaluation_strategy "no" \
61
+ --save_strategy "steps" \
62
+ --save_steps 500 \
63
+ --save_total_limit 99 \
64
+ --learning_rate 1e-3 \
65
+ --weight_decay 0. \
66
+ --warmup_ratio 0.03 \
67
+ --lr_scheduler_type "cosine" \
68
+ --logging_steps 1 \
69
+ --model_max_length 2048 \
70
+ --gradient_checkpointing True \
71
+ --dataloader_num_workers 4 \
72
+ --report_to tensorboard \
73
+ --run_name $RUN_NAME \
VideoLLaMA2/scripts/zero2.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "fp16": {
3
+ "enabled": "auto",
4
+ "loss_scale": 0,
5
+ "loss_scale_window": 1000,
6
+ "initial_scale_power": 16,
7
+ "hysteresis": 2,
8
+ "min_loss_scale": 1
9
+ },
10
+ "bf16": {
11
+ "enabled": "auto"
12
+ },
13
+ "train_micro_batch_size_per_gpu": "auto",
14
+ "train_batch_size": "auto",
15
+ "gradient_accumulation_steps": "auto",
16
+ "zero_optimization": {
17
+ "stage": 2,
18
+ "overlap_comm": true,
19
+ "contiguous_gradients": true,
20
+ "sub_group_size": 1e9,
21
+ "reduce_bucket_size": "auto"
22
+ }
23
+ }
VideoLLaMA2/scripts/zero3.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "fp16": {
3
+ "enabled": "auto",
4
+ "loss_scale": 0,
5
+ "loss_scale_window": 1000,
6
+ "initial_scale_power": 16,
7
+ "hysteresis": 2,
8
+ "min_loss_scale": 1
9
+ },
10
+ "bf16": {
11
+ "enabled": "auto"
12
+ },
13
+ "train_micro_batch_size_per_gpu": "auto",
14
+ "train_batch_size": "auto",
15
+ "gradient_accumulation_steps": "auto",
16
+ "zero_optimization": {
17
+ "stage": 3,
18
+ "overlap_comm": true,
19
+ "contiguous_gradients": true,
20
+ "sub_group_size": 1e9,
21
+ "reduce_bucket_size": "auto",
22
+ "stage3_prefetch_bucket_size": "auto",
23
+ "stage3_param_persistence_threshold": "auto",
24
+ "stage3_max_live_parameters": 1e9,
25
+ "stage3_max_reuse_distance": 1e9,
26
+ "stage3_gather_16bit_weights_on_model_save": true
27
+ }
28
+ }
VideoLLaMA2/videollama2/__init__.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import copy
3
+ import warnings
4
+ import shutil
5
+ from functools import partial
6
+
7
+ import torch
8
+
9
+ from .model import load_pretrained_model
10
+ from .mm_utils import process_image, process_video, tokenizer_multimodal_token, get_model_name_from_path, KeywordsStoppingCriteria
11
+ from .constants import NUM_FRAMES, DEFAULT_IMAGE_TOKEN, DEFAULT_VIDEO_TOKEN, MODAL_INDEX_MAP
12
+
13
+
14
+ def model_init(model_path=None, **kwargs):
15
+ model_path = "DAMO-NLP-SG/VideoLLaMA2-7B" if model_path is None else model_path
16
+ model_name = get_model_name_from_path(model_path)
17
+ tokenizer, model, processor, context_len = load_pretrained_model(model_path, None, model_name, **kwargs)
18
+
19
+ if tokenizer.pad_token is None and tokenizer.unk_token is not None:
20
+ tokenizer.pad_token = tokenizer.unk_token
21
+
22
+ num_frames = model.config.num_frames if hasattr(model.config, "num_frames") else NUM_FRAMES
23
+
24
+ processor = {
25
+ 'image': partial(process_image, processor=processor, aspect_ratio=None),
26
+ 'video': partial(process_video, processor=processor, aspect_ratio=None, num_frames=num_frames),
27
+ }
28
+
29
+ return model, processor, tokenizer
30
+
31
+
32
+ def mm_infer(image_or_video, instruct, model, tokenizer, modal='video', **kwargs):
33
+ """inference api of VideoLLaMA2 for video understanding.
34
+
35
+ Args:
36
+ model: VideoLLaMA2 model.
37
+ image_or_video (torch.Tensor): image tensor (1, C, H, W) / video tensor (T, C, H, W).
38
+ instruct (str): text instruction for understanding video.
39
+ tokenizer: tokenizer.
40
+ do_sample (bool): whether to sample.
41
+ modal (str): inference modality.
42
+ Returns:
43
+ str: response of the model.
44
+ """
45
+
46
+ # 1. text preprocess (tag process & generate prompt).
47
+ if modal == 'image':
48
+ modal_token = DEFAULT_IMAGE_TOKEN
49
+ elif modal == 'video':
50
+ modal_token = DEFAULT_VIDEO_TOKEN
51
+ elif modal == 'text':
52
+ modal_token = ''
53
+ else:
54
+ raise ValueError(f"Unsupported modal: {modal}")
55
+
56
+ # 1. vision preprocess (load & transform image or video).
57
+ if modal == 'text':
58
+ tensor = None
59
+ else:
60
+ tensor = image_or_video.half().cuda()
61
+ tensor = [(tensor, modal)]
62
+
63
+ # 2. text preprocess (tag process & generate prompt).
64
+ if isinstance(instruct, str):
65
+ message = [{'role': 'user', 'content': modal_token + '\n' + instruct}]
66
+ elif isinstance(instruct, list):
67
+ message = copy.deepcopy(instruct)
68
+ message[0]['content'] = modal_token + '\n' + message[0]['content']
69
+ else:
70
+ raise ValueError(f"Unsupported type of instruct: {type(instruct)}")
71
+
72
+ if model.config.model_type in ['videollama2', 'videollama2_mistral', 'videollama2_mixtral']:
73
+ system_message = [
74
+ {'role': 'system', 'content': (
75
+ """<<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature."""
76
+ """\n"""
77
+ """If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>""")
78
+ }
79
+ ]
80
+ else:
81
+ system_message = []
82
+
83
+ message = system_message + message
84
+ prompt = tokenizer.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
85
+
86
+ input_ids = tokenizer_multimodal_token(prompt, tokenizer, modal_token, return_tensors='pt').unsqueeze(0).long().cuda()
87
+ attention_masks = input_ids.ne(tokenizer.pad_token_id).long().cuda()
88
+
89
+ # 3. generate response according to visual signals and prompts.
90
+ keywords = [tokenizer.eos_token]
91
+ stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
92
+
93
+ do_sample = kwargs.get('do_sample', False)
94
+ temperature = kwargs.get('temperature', 0.2 if do_sample else 0.0)
95
+ top_p = kwargs.get('top_p', 0.9)
96
+ max_new_tokens = kwargs.get('max_new_tokens', 2048)
97
+
98
+ with torch.inference_mode():
99
+ output_ids = model.generate(
100
+ input_ids,
101
+ attention_mask=attention_masks,
102
+ images=tensor,
103
+ do_sample=do_sample,
104
+ temperature=temperature,
105
+ max_new_tokens=max_new_tokens,
106
+ top_p=top_p,
107
+ use_cache=True,
108
+ stopping_criteria=[stopping_criteria],
109
+ pad_token_id=tokenizer.eos_token_id,
110
+ )
111
+
112
+ outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
113
+
114
+ return outputs
VideoLLaMA2/videollama2/constants.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CONTROLLER_HEART_BEAT_EXPIRATION = 30
2
+ WORKER_HEART_BEAT_INTERVAL = 15
3
+
4
+ LOGDIR = "."
5
+
6
+ # Model Constants
7
+ IGNORE_INDEX = -100
8
+
9
+ # Image arguments
10
+ IMAGE_TOKEN_INDEX = -200
11
+ DEFAULT_IMAGE_TOKEN = "<image>"
12
+ DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
13
+ DEFAULT_IM_START_TOKEN = "<im_start>"
14
+ DEFAULT_IM_END_TOKEN = "<im_end>"
15
+ IMAGE_PLACEHOLDER = "<image-placeholder>"
16
+
17
+ # Video arguments
18
+ VIDEO_TOKEN_INDEX = -201
19
+ DEFAULT_VIDEO_TOKEN = "<video>"
20
+ NUM_FRAMES = 8
21
+ MAX_FRAMES = 32
22
+ NUM_FRAMES_PER_SECOND = 1
23
+
24
+ # Audio arguments
25
+ AUDIO_TOKEN_INDEX = -202
26
+ DEFAULT_AUDIO_TOKEN = "<audio>"
27
+
28
+ MODAL_INDEX_MAP = {
29
+ "<image>": -200,
30
+ "<video>": -201,
31
+ "<audio>": -202,
32
+ }
VideoLLaMA2/videollama2/conversation.py ADDED
@@ -0,0 +1,507 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import dataclasses
3
+ from io import BytesIO
4
+ from enum import auto, Enum
5
+ from typing import List, Tuple
6
+
7
+ from PIL import Image
8
+ from .constants import LOGDIR, NUM_FRAMES
9
+
10
+
11
+ class SeparatorStyle(Enum):
12
+ """Different separator style."""
13
+ SINGLE = auto()
14
+ TWO = auto()
15
+ PLAIN = auto()
16
+ LLAMA2 = auto()
17
+ QWEN = auto()
18
+
19
+ @dataclasses.dataclass
20
+ class Conversation:
21
+ """A class that keeps all conversation history."""
22
+ system: str
23
+ roles: List[str]
24
+ messages: List[List[str]]
25
+ offset: int
26
+ sep_style: SeparatorStyle = SeparatorStyle.SINGLE
27
+ sep: str = "###"
28
+ sep2: str = None
29
+ version: str = "Unknown"
30
+
31
+ skip_next: bool = False
32
+ modality: str = "image"
33
+
34
+ def get_prompt(self):
35
+ messages = self.messages
36
+ modality_token = f"<{self.modality}>"
37
+ if len(messages) > 0 and type(messages[0][1]) is tuple:
38
+ messages = self.messages.copy()
39
+ init_role, init_msg = messages[0].copy()
40
+ init_msg = init_msg[0].replace(modality_token, "").strip()
41
+ if 'mmtag' in self.version:
42
+ messages[0] = (init_role, init_msg)
43
+ messages.insert(0, (self.roles[0], "<Image><image></Image>"))
44
+ messages.insert(1, (self.roles[1], "Received."))
45
+ else:
46
+ messages[0] = (init_role, f"{modality_token}\n" + init_msg)
47
+
48
+ if self.sep_style == SeparatorStyle.SINGLE:
49
+ ret = self.system + self.sep
50
+ for role, message in messages:
51
+ if message:
52
+ if type(message) is tuple:
53
+ message, _, _ = message
54
+ ret += role + ": " + message + self.sep
55
+ else:
56
+ ret += role + ":"
57
+ elif self.sep_style == SeparatorStyle.TWO:
58
+ seps = [self.sep, self.sep2]
59
+ ret = self.system + seps[0]
60
+ for i, (role, message) in enumerate(messages):
61
+ if message:
62
+ if type(message) is tuple:
63
+ message, _, _ = message
64
+ ret += role + ": " + message + seps[i % 2]
65
+ else:
66
+ ret += role + ":"
67
+ elif self.sep_style == SeparatorStyle.LLAMA2:
68
+ wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n"
69
+ wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
70
+ ret = ""
71
+
72
+ for i, (role, message) in enumerate(messages):
73
+ if i == 0:
74
+ assert message, "first message should not be none"
75
+ assert role == self.roles[0], "first message should come from user"
76
+ if message:
77
+ if type(message) is tuple:
78
+ message, _, _ = message
79
+ if i == 0: message = wrap_sys(self.system) + message
80
+ if i % 2 == 0:
81
+ message = wrap_inst(message)
82
+ ret += self.sep + message
83
+ else:
84
+ ret += " " + message + " " + self.sep2
85
+ else:
86
+ ret += ""
87
+ ret = ret.lstrip(self.sep)
88
+ elif self.sep_style == SeparatorStyle.QWEN:
89
+ ret = ""
90
+ # 1. Add system prompt
91
+ ret += self.system + self.sep + "\n"
92
+ # 2. Iterate message
93
+ for i, (role, message) in enumerate(messages):
94
+ if i == 0:
95
+ assert message, "first message should not be none"
96
+ assert role == self.roles[0], "first message should come from user"
97
+ if message:
98
+ if type(message) is tuple:
99
+ message, _, _ = message
100
+ # 2.1 Add role and message
101
+ ret += role + message + self.sep + "\n"
102
+ else:
103
+ # 2.2 Add generation prompt
104
+ ret += role
105
+ elif self.sep_style == SeparatorStyle.PLAIN:
106
+ seps = [self.sep, self.sep2]
107
+ ret = self.system
108
+ for i, (role, message) in enumerate(messages):
109
+ if message:
110
+ if type(message) is tuple:
111
+ message, _, _ = message
112
+ ret += role + message + seps[i % 2]
113
+ else:
114
+ ret += role
115
+ else:
116
+ raise ValueError(f"Invalid style: {self.sep_style}")
117
+
118
+ return ret
119
+
120
+ def append_message(self, role, message):
121
+ self.messages.append([role, message])
122
+
123
+ def process_image(self, image, image_process_mode, return_pil=False, image_format='PNG', max_len=800, min_len=400):
124
+ if image_process_mode == "Pad":
125
+ def expand2square(pil_img, background_color=(122, 116, 104)):
126
+ width, height = pil_img.size
127
+ if width == height:
128
+ return pil_img
129
+ elif width > height:
130
+ result = Image.new(pil_img.mode, (width, width), background_color)
131
+ result.paste(pil_img, (0, (width - height) // 2))
132
+ return result
133
+ else:
134
+ result = Image.new(pil_img.mode, (height, height), background_color)
135
+ result.paste(pil_img, ((height - width) // 2, 0))
136
+ return result
137
+ image = expand2square(image)
138
+ elif image_process_mode in ["Default", "Crop"]:
139
+ pass
140
+ elif image_process_mode == "Resize":
141
+ image = image.resize((336, 336))
142
+ else:
143
+ raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
144
+ if max(image.size) > max_len:
145
+ max_hw, min_hw = max(image.size), min(image.size)
146
+ aspect_ratio = max_hw / min_hw
147
+ shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
148
+ longest_edge = int(shortest_edge * aspect_ratio)
149
+ W, H = image.size
150
+ if H > W:
151
+ H, W = longest_edge, shortest_edge
152
+ else:
153
+ H, W = shortest_edge, longest_edge
154
+ image = image.resize((W, H))
155
+ if return_pil:
156
+ return image
157
+ else:
158
+ buffered = BytesIO()
159
+ image.save(buffered, format=image_format)
160
+ img_b64_str = base64.b64encode(buffered.getvalue()).decode()
161
+ return img_b64_str
162
+
163
+
164
+ def get_videos(self, return_pil=False):
165
+ video_frames = []
166
+ for i, (role, msg) in enumerate(self.messages[self.offset:]):
167
+ if i % 2 == 0:
168
+ if type(msg) is tuple:
169
+ from decord import VideoReader, cpu
170
+ import numpy as np
171
+ # here video is the file path of input video
172
+ msg, video, image_process_mode = msg
173
+ if not return_pil:
174
+ # return filepath
175
+ video_frames.append(video)
176
+ else:
177
+ # read video using decord.VideoReader
178
+ decord_vr = VideoReader(uri=video, ctx=cpu(0))
179
+ duration = len(decord_vr)
180
+ frame_id_list = np.linspace(0, duration-1, NUM_FRAMES, dtype=int)
181
+ # convert the extracted image frames into PIL objects
182
+ all_images = [Image.fromarray(f) for f in decord_vr.get_batch(frame_id_list).asnumpy()]
183
+ video_frames.extend([self.process_image(image, image_process_mode, return_pil=return_pil) for image in all_images])
184
+ return video_frames
185
+
186
+
187
+ def get_images(self, return_pil=False):
188
+ images = []
189
+ for i, (role, msg) in enumerate(self.messages[self.offset:]):
190
+ if i % 2 == 0:
191
+ if type(msg) is tuple:
192
+ msg, image, image_process_mode = msg
193
+ image = self.process_image(image, image_process_mode, return_pil=return_pil)
194
+ images.append(image)
195
+
196
+ # import base64
197
+ # from io import BytesIO
198
+ # from PIL import Image
199
+ # # here image is a PIL object
200
+ # msg, image, image_process_mode = msg
201
+ # if image_process_mode == "Pad":
202
+ # def expand2square(pil_img, background_color=(122, 116, 104)):
203
+ # width, height = pil_img.size
204
+ # if width == height:
205
+ # return pil_img
206
+ # elif width > height:
207
+ # result = Image.new(pil_img.mode, (width, width), background_color)
208
+ # result.paste(pil_img, (0, (width - height) // 2))
209
+ # return result
210
+ # else:
211
+ # result = Image.new(pil_img.mode, (height, height), background_color)
212
+ # result.paste(pil_img, ((height - width) // 2, 0))
213
+ # return result
214
+ # image = expand2square(image)
215
+ # elif image_process_mode in ["Default", "Crop"]:
216
+ # pass
217
+ # elif image_process_mode == "Resize":
218
+ # image = image.resize((336, 336))
219
+ # else:
220
+ # raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
221
+ # max_hw, min_hw = max(image.size), min(image.size)
222
+ # aspect_ratio = max_hw / min_hw
223
+ # max_len, min_len = 800, 400
224
+ # shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
225
+ # longest_edge = int(shortest_edge * aspect_ratio)
226
+ # W, H = image.size
227
+ # if longest_edge != max(image.size):
228
+ # if H > W:
229
+ # H, W = longest_edge, shortest_edge
230
+ # else:
231
+ # H, W = shortest_edge, longest_edge
232
+ # image = image.resize((W, H))
233
+ # if return_pil:
234
+ # images.append(image)
235
+ # else:
236
+ # buffered = BytesIO()
237
+ # image.save(buffered, format="PNG")
238
+ # img_b64_str = base64.b64encode(buffered.getvalue()).decode()
239
+ # images.append(img_b64_str)
240
+ return images
241
+
242
+ def to_gradio_chatbot(self):
243
+ ret = []
244
+ for i, (role, msg) in enumerate(self.messages[self.offset:]):
245
+ if i % 2 == 0:
246
+ if type(msg) is tuple:
247
+ # import base64
248
+ # from io import BytesIO
249
+ # from PIL import Image
250
+ # msg, image, image_process_mode = msg
251
+ # max_hw, min_hw = max(image.size), min(image.size)
252
+ # aspect_ratio = max_hw / min_hw
253
+ # max_len, min_len = 800, 400
254
+ # shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
255
+ # longest_edge = int(shortest_edge * aspect_ratio)
256
+ # W, H = image.size
257
+ # if H > W:
258
+ # H, W = longest_edge, shortest_edge
259
+ # else:
260
+ # H, W = shortest_edge, longest_edge
261
+ # image = image.resize((W, H))
262
+ # buffered = BytesIO()
263
+ # image.save(buffered, format="JPEG")
264
+ # img_b64_str = base64.b64encode(buffered.getvalue()).decode()
265
+ # img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
266
+ # display image/video in the textbox
267
+ msg, image_or_video, image_process_mode = msg
268
+ ##print("imagebox:", image)
269
+ if isinstance(image_or_video, Image.Image):
270
+ # image is PIL object
271
+ img_b64_str = self.process_image(image_or_video, "Default", return_pil=False, image_format='JPEG')
272
+ img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" alt="user upload image" />'
273
+ msg = img_str + msg.replace('<image>', '').strip()
274
+ else:
275
+ # video is file path
276
+ vid_str = f'<video controls playsinline width="500" style="display: inline-block;" src="./file={image_or_video}"></video><br>'
277
+ msg = vid_str + msg.replace('<video>', '').strip()
278
+ ret.append([msg, None])
279
+ else:
280
+ ret.append([msg, None])
281
+ else:
282
+ ret[-1][-1] = msg
283
+ return ret
284
+
285
+ def copy(self):
286
+ return Conversation(
287
+ system=self.system,
288
+ roles=self.roles,
289
+ messages=[[x, y] for x, y in self.messages],
290
+ offset=self.offset,
291
+ sep_style=self.sep_style,
292
+ sep=self.sep,
293
+ sep2=self.sep2,
294
+ version=self.version)
295
+
296
+ def dict(self):
297
+ if (self.modality == "image" and len(self.get_images()) > 0) or \
298
+ (self.modality == "video" and len(self.get_videos()) > 0):
299
+ return {
300
+ "system": self.system,
301
+ "roles": self.roles,
302
+ "messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
303
+ "offset": self.offset,
304
+ "sep": self.sep,
305
+ "sep2": self.sep2,
306
+ "modality": self.modality
307
+ }
308
+ return {
309
+ "system": self.system,
310
+ "roles": self.roles,
311
+ "messages": self.messages,
312
+ "offset": self.offset,
313
+ "sep": self.sep,
314
+ "sep2": self.sep2,
315
+ }
316
+
317
+
318
+ conv_vicuna_v0 = Conversation(
319
+ system="A chat between a curious human and an artificial intelligence assistant. "
320
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
321
+ roles=("Human", "Assistant"),
322
+ messages=(
323
+ ("Human", "What are the key differences between renewable and non-renewable energy sources?"),
324
+ ("Assistant",
325
+ "Renewable energy sources are those that can be replenished naturally in a relatively "
326
+ "short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
327
+ "Non-renewable energy sources, on the other hand, are finite and will eventually be "
328
+ "depleted, such as coal, oil, and natural gas. Here are some key differences between "
329
+ "renewable and non-renewable energy sources:\n"
330
+ "1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
331
+ "energy sources are finite and will eventually run out.\n"
332
+ "2. Environmental impact: Renewable energy sources have a much lower environmental impact "
333
+ "than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
334
+ "and other negative effects.\n"
335
+ "3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
336
+ "have lower operational costs than non-renewable sources.\n"
337
+ "4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
338
+ "locations than non-renewable sources.\n"
339
+ "5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
340
+ "situations and needs, while non-renewable sources are more rigid and inflexible.\n"
341
+ "6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
342
+ "non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
343
+ ),
344
+ offset=2,
345
+ sep_style=SeparatorStyle.SINGLE,
346
+ sep="###",
347
+ )
348
+
349
+ conv_llava_plain = Conversation(
350
+ system="",
351
+ roles=("", ""),
352
+ messages=(),
353
+ offset=0,
354
+ sep_style=SeparatorStyle.PLAIN,
355
+ sep="",
356
+ sep2="\n"
357
+ )
358
+
359
+ conv_llava_v0_mmtag = Conversation(
360
+ system="A chat between a curious user and an artificial intelligence assistant. "
361
+ "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
362
+ "The visual content will be provided with the following format: <Image>visual content</Image>.",
363
+ roles=("Human", "Assistant"),
364
+ messages=(
365
+ ),
366
+ offset=0,
367
+ sep_style=SeparatorStyle.SINGLE,
368
+ sep="###",
369
+ version="v0_mmtag",
370
+ )
371
+
372
+ conv_llava_v0 = Conversation(
373
+ system="A chat between a curious human and an artificial intelligence assistant. "
374
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
375
+ roles=("Human", "Assistant"),
376
+ messages=(
377
+ ),
378
+ offset=0,
379
+ sep_style=SeparatorStyle.SINGLE,
380
+ sep="###",
381
+ )
382
+
383
+ conv_vicuna_v1 = Conversation(
384
+ system="A chat between a curious user and an artificial intelligence assistant. "
385
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
386
+ roles=("USER", "ASSISTANT"),
387
+ version="v1",
388
+ messages=(),
389
+ offset=0,
390
+ sep_style=SeparatorStyle.TWO,
391
+ sep=" ",
392
+ sep2="</s>",
393
+ )
394
+
395
+ conv_llava_v1_mmtag = Conversation(
396
+ system="A chat between a curious user and an artificial intelligence assistant. "
397
+ "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
398
+ "The visual content will be provided with the following format: <Image>visual content</Image>.",
399
+ roles=("USER", "ASSISTANT"),
400
+ messages=(),
401
+ offset=0,
402
+ sep_style=SeparatorStyle.TWO,
403
+ sep=" ",
404
+ sep2="</s>",
405
+ version="v1_mmtag",
406
+ )
407
+
408
+ conv_llava_v1 = Conversation(
409
+ system="A chat between a curious human and an artificial intelligence assistant. "
410
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
411
+ roles=("USER", "ASSISTANT"),
412
+ version="v1",
413
+ messages=(),
414
+ offset=0,
415
+ sep_style=SeparatorStyle.TWO,
416
+ sep=" ",
417
+ sep2="</s>",
418
+ )
419
+
420
+ conv_llava_llama2 = Conversation(
421
+ system="You are a helpful language and vision assistant. "
422
+ "You are able to understand the visual content that the user provides, "
423
+ "and assist the user with a variety of tasks using natural language.",
424
+ roles=("USER", "ASSISTANT"),
425
+ version="llama2",
426
+ messages=(),
427
+ offset=0,
428
+ sep_style=SeparatorStyle.LLAMA2,
429
+ sep="<s>",
430
+ sep2="</s>",
431
+ )
432
+
433
+ conv_llama2 = Conversation(
434
+ system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
435
+
436
+ If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
437
+ roles=("USER", "ASSISTANT"),
438
+ version="llama2",
439
+ messages=(),
440
+ offset=0,
441
+ sep_style=SeparatorStyle.LLAMA2,
442
+ sep="<s>",
443
+ sep2="</s>",
444
+ )
445
+
446
+ conv_mistral = Conversation(
447
+ system="A chat between a curious user and an artificial intelligence assistant. "
448
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
449
+ roles=("USER", "ASSISTANT"),
450
+ version="llama2",
451
+ messages=(),
452
+ offset=0,
453
+ sep_style=SeparatorStyle.LLAMA2,
454
+ sep="",
455
+ sep2="</s>",
456
+ )
457
+
458
+ conv_qwen = Conversation(
459
+ system="<|im_start|>system\nYou are a helpful assistant.",
460
+ roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
461
+ messages=(),
462
+ offset=0,
463
+ sep_style=SeparatorStyle.QWEN,
464
+ sep="<|im_end|>",
465
+ version="qwen",
466
+ )
467
+
468
+ conv_qwen_plain = Conversation(
469
+ system="",
470
+ roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
471
+ messages=(),
472
+ offset=0,
473
+ sep_style=SeparatorStyle.PLAIN,
474
+ sep="<|im_end|>",
475
+ sep2="<|im_end|>",
476
+ version="qwen_plain",
477
+ )
478
+
479
+ default_conversation = conv_mistral
480
+ conv_templates = {
481
+ "default": conv_vicuna_v0,
482
+ # pretrain template
483
+ "plain": conv_llava_plain,
484
+ # llava v0
485
+ "v0": conv_vicuna_v0,
486
+ "v0_plain": conv_llava_plain,
487
+ "v0_mmtag": conv_llava_v0_mmtag,
488
+ "llava_v0": conv_llava_v0,
489
+ # llava v1
490
+ "v1": conv_vicuna_v1,
491
+ "v1_mmtag": conv_llava_v1_mmtag,
492
+ "llava_v1": conv_llava_v1,
493
+ "vicuna_v1": conv_vicuna_v1,
494
+ # llava v1.5
495
+ "llava_llama2": conv_llava_llama2,
496
+ # llama2
497
+ "llama2": conv_llama2,
498
+ # mistral
499
+ "mistral": conv_mistral,
500
+ # qwen
501
+ "qwen": conv_qwen,
502
+ "qwen_plain": conv_qwen_plain,
503
+ }
504
+
505
+
506
+ if __name__ == "__main__":
507
+ print(default_conversation.get_prompt())
VideoLLaMA2/videollama2/eval/eval_video_cap_msvc_correctness.py ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import os
3
+ import ast
4
+ import time
5
+ import json
6
+ import argparse
7
+ from tqdm import tqdm
8
+ from multiprocessing.pool import Pool
9
+
10
+ import openai
11
+ from openai import AzureOpenAI
12
+
13
+
14
+ def init():
15
+ client = AzureOpenAI(
16
+ azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
17
+ api_key=os.getenv("AZURE_OPENAI_KEY"),
18
+ api_version="2024-02-15-preview"
19
+ )
20
+
21
+ return client
22
+
23
+
24
+ def interaction(client, message_text):
25
+ completion = client.chat.completions.create(
26
+ model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
27
+ messages = message_text,
28
+ temperature=0.7,
29
+ max_tokens=800,
30
+ top_p=0.95,
31
+ frequency_penalty=0,
32
+ presence_penalty=0,
33
+ stop=None
34
+ )
35
+
36
+ return completion
37
+
38
+
39
+ def annotate(prediction_set, caption_files, output_dir):
40
+ """
41
+ Evaluates question and answer pairs using GPT-3
42
+ Returns a score for correctness.
43
+ """
44
+
45
+ for file in tqdm(caption_files):
46
+ key = file[:-5] # Strip file extension
47
+ qa_set = prediction_set[key]
48
+ question = qa_set['q']
49
+ answer = str(qa_set['a'])
50
+ pred = qa_set['pred']
51
+ try:
52
+ message = [
53
+ {
54
+ "role": "system",
55
+ "content":
56
+ "You are an intelligent chatbot designed for evaluating the factual accuracy of generative outputs for video-based question-answer pairs. "
57
+ "Your task is to compare the predicted answer with these correct answers and determine if they are factually consistent. Here's how you can accomplish the task:"
58
+ "------"
59
+ "##INSTRUCTIONS: "
60
+ "- Focus on the factual consistency between the predicted answer and the correct answer. The predicted answer should not contain any misinterpretations or misinformation.\n"
61
+ "- The predicted answer must be factually accurate and align with the video content.\n"
62
+ "- Consider synonyms or paraphrases as valid matches.\n"
63
+ "- Evaluate the factual accuracy of the prediction compared to the answer."
64
+ },
65
+ {
66
+ "role": "user",
67
+ "content":
68
+ "Please evaluate the following video-based question-answer pair:\n\n"
69
+ f"Question: {question}\n"
70
+ f"Correct Answers: {answer}\n"
71
+ f"Predicted Answer: {pred}\n\n"
72
+ "Provide your evaluation only as a factual accuracy score where the factual accuracy score is an integer value between 0 and 5, with 5 indicating the highest level of factual consistency. "
73
+ "Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the factual accuracy score in INTEGER, not STRING."
74
+ "DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
75
+ "For example, your response should look like this: {''score': 4.8}."
76
+ }
77
+ ]
78
+ completion = interaction(client, message)
79
+ # Convert response to a Python dictionary.
80
+ response_message = completion.choices[0].message.content
81
+ response_dict = ast.literal_eval(response_message)
82
+ result_qa_pair = [response_dict, qa_set]
83
+ # # Save the question-answer pairs to a json file.
84
+ with open(f"{output_dir}/{key}.json", "w") as f:
85
+ json.dump(result_qa_pair, f)
86
+
87
+ except Exception as e:
88
+ print(f"Error processing file '{key}': {e}")
89
+
90
+ time.sleep(1)
91
+
92
+
93
+ def longest_repeating_substring(s):
94
+ n = len(s)
95
+ dp = [[0] * (n+1) for _ in range(n+1)]
96
+ res = ""
97
+ res_length = 0
98
+
99
+ index = 0
100
+ for i in range(1, n+1):
101
+ for j in range(i+1, n+1):
102
+ if (dp[i-1][j-1] > 0 and dp[i-1][j-1] < (j-i)) or s[i-1] == s[j-1]:
103
+ dp[i][j] = dp[i-1][j-1] + 1
104
+ if dp[i][j] > res_length:
105
+ res_length = dp[i][j]
106
+ index = max(i, index)
107
+ else:
108
+ dp[i][j] = 0
109
+
110
+ if res_length > 0:
111
+ for i in range(index-res_length+1, index+1):
112
+ res = res + s[i-1]
113
+
114
+ return res
115
+
116
+
117
+ def main(args):
118
+ if args.num_chunks > 1:
119
+ pred_contents = []
120
+ for _idx in range(args.num_chunks):
121
+ file = os.path.join(args.pred_path, f"{args.num_chunks}_{_idx}.json")
122
+ pred_contents += [json.loads(line) for line in open(file)]
123
+ else:
124
+ pred_contents = [json.loads(line) for line in open(args.pred_path)]
125
+
126
+ # Dictionary to store the count of occurrences for each video_id
127
+ video_id_counts = {}
128
+ new_pred_contents = []
129
+
130
+ # Iterate through each sample in pred_contents
131
+ for sample in pred_contents:
132
+ video_id = sample["video_name"]
133
+ if video_id in video_id_counts:
134
+ video_id_counts[video_id] += 1
135
+ else:
136
+ video_id_counts[video_id] = 0
137
+
138
+ # Create a new sample with the modified key
139
+ new_sample = sample
140
+ new_sample["video_name"] = f"{video_id.split('/')[-1].split('.')[0]}_{video_id_counts[video_id]}"
141
+ new_pred_contents.append(new_sample)
142
+
143
+ # Generating list of id's and corresponding files
144
+ id_list = [x["video_name"] for x in new_pred_contents]
145
+ caption_files = [f"{id}.json" for id in id_list]
146
+
147
+ output_dir = args.output_dir
148
+ # Generate output directory if not exists.
149
+ if not os.path.exists(output_dir):
150
+ os.makedirs(output_dir)
151
+
152
+ # Preparing dictionary of question-answer sets
153
+ prediction_set = {}
154
+ for sample in new_pred_contents:
155
+ id = sample["video_name"]
156
+ # print(sample)
157
+ question = sample["question"]
158
+ answer = sample["answer"]
159
+ pred = sample["pred"]
160
+ qa_set = {"q": question, "a": answer, "pred": pred}
161
+ prediction_set[id] = qa_set
162
+
163
+ # # Set the OpenAI API key.
164
+ # openai.api_key = args.api_key # Your API key here
165
+ # if args.api_base:
166
+ # openai.api_base = args.api_base # Your API base here
167
+ num_tasks = args.num_tasks
168
+
169
+ # While loop to ensure that all captions are processed.
170
+ while True:
171
+ try:
172
+ # Files that have not been processed yet.
173
+ completed_files = os.listdir(output_dir)
174
+ print(f"completed_files: {len(completed_files)}")
175
+
176
+ # Files that have not been processed yet.
177
+ incomplete_files = [f for f in caption_files if f not in completed_files]
178
+ print(f"incomplete_files: {len(incomplete_files)}")
179
+
180
+ # Break the loop when there are no incomplete files
181
+ if len(incomplete_files) == 0:
182
+ break
183
+ if len(incomplete_files) <= num_tasks:
184
+ num_tasks = 1
185
+
186
+ # Split tasks into parts.
187
+ part_len = len(incomplete_files) // num_tasks
188
+ all_parts = [incomplete_files[i : i + part_len] for i in range(0, len(incomplete_files), part_len)]
189
+ task_args = [(prediction_set, part, args.output_dir) for part in all_parts]
190
+ print("Generate", len(all_parts), "subprocess.")
191
+
192
+ # Use a pool of workers to process the files in parallel.
193
+ # with Pool() as pool:
194
+ # pool.starmap(annotate, task_args)
195
+ # import pdb;pdb.set_trace()
196
+ annotate(*task_args[0])
197
+
198
+ except Exception as e:
199
+ print(f"Error: {e}")
200
+
201
+ # Combine all the processed files into one
202
+ combined_contents = {}
203
+ json_path = args.output_json
204
+
205
+ # Iterate through json files
206
+ for file_name in os.listdir(output_dir):
207
+ if file_name.endswith(".json"):
208
+ file_path = os.path.join(output_dir, file_name)
209
+ with open(file_path, "r") as json_file:
210
+ try:
211
+ content = json.load(json_file)
212
+ combined_contents[file_name[:-5]] = content
213
+ except Exception as e:
214
+ print(f"Error: {e}")
215
+ pass
216
+
217
+ # Calculate average score
218
+ score_sum = 0
219
+ count = 0
220
+ for key, result in combined_contents.items():
221
+ count += 1
222
+ try:
223
+ # key = result[0].keys()[0]
224
+ # import pdb; pdb.set_trace()
225
+ for _ in result[0].keys():
226
+ score_match = result[0][_]
227
+ score = int(score_match)
228
+ score_sum += score
229
+ break
230
+ except Exception as e:
231
+ print(f"Error processing file '{key}': {e}")
232
+ import pdb; pdb.set_trace()
233
+ average_score = score_sum / count
234
+ combined_contents["average_score"] = average_score
235
+ with open(json_path, "w") as json_file:
236
+ json.dump(combined_contents, json_file, indent=4)
237
+ print("Average score for correctness:", average_score)
238
+
239
+
240
+ if __name__ == "__main__":
241
+ parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
242
+ parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
243
+ parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
244
+ parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
245
+ parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
246
+ parser.add_argument("--num_chunks", default=1, type=int, help="Result splits")
247
+ parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
248
+ parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
249
+ parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
250
+ args = parser.parse_args()
251
+
252
+ # Set the OpenAI API key.
253
+ os.environ["AZURE_OPENAI_KEY"] = args.api_key
254
+ os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
255
+ os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
256
+
257
+ client = init()
258
+
259
+ main(args)
VideoLLaMA2/videollama2/eval/eval_video_cap_msvc_detailedness.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import os
3
+ import ast
4
+ import time
5
+ import json
6
+ import argparse
7
+ from tqdm import tqdm
8
+ from multiprocessing.pool import Pool
9
+
10
+ import openai
11
+ from openai import AzureOpenAI
12
+
13
+
14
+ def init():
15
+ client = AzureOpenAI(
16
+ azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
17
+ api_key=os.getenv("AZURE_OPENAI_KEY"),
18
+ api_version="2024-02-15-preview"
19
+ )
20
+
21
+ return client
22
+
23
+
24
+ def interaction(client, message_text):
25
+ completion = client.chat.completions.create(
26
+ model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
27
+ messages = message_text,
28
+ temperature=0.7,
29
+ max_tokens=800,
30
+ top_p=0.95,
31
+ frequency_penalty=0,
32
+ presence_penalty=0,
33
+ stop=None
34
+ )
35
+
36
+ return completion
37
+
38
+
39
+ def annotate(prediction_set, caption_files, output_dir):
40
+ """
41
+ Evaluates question and answer pairs using GPT-3
42
+ Returns a score for correctness.
43
+ """
44
+
45
+ for file in tqdm(caption_files):
46
+ key = file[:-5] # Strip file extension
47
+ qa_set = prediction_set[key]
48
+ question = qa_set['q']
49
+ answer = str(qa_set['a'])
50
+ pred = qa_set['pred']
51
+ try:
52
+ message = [
53
+ {
54
+ "role": "system",
55
+ "content": "You are an intelligent chatbot designed for evaluating the detail orientation of generative outputs for video-based question-answer pairs. "
56
+ "Your task is to compare the predicted answer with these correct answers and determine its level of detail, considering both completeness and specificity. Here's how you can accomplish the task:"
57
+ "------"
58
+ "##INSTRUCTIONS: "
59
+ "- Check if the predicted answer covers all major points from the video. The response should not leave out any key aspects.\n"
60
+ "- Evaluate whether the predicted answer includes specific details rather than just generic points. It should provide comprehensive information that is tied to specific elements of the video.\n"
61
+ "- Consider synonyms or paraphrases as valid matches.\n"
62
+ "- Provide a single evaluation score that reflects the level of detail orientation of the prediction, considering both completeness and specificity.",
63
+ },
64
+ {
65
+ "role": "user",
66
+ "content": "Please evaluate the following video-based question-answer pair:\n\n"
67
+ f"Question: {question}\n"
68
+ f"Correct Answers: {answer}\n"
69
+ f"Predicted Answer: {pred}\n\n"
70
+ "Provide your evaluation only as a detail orientation score where the detail orientation score is an integer value between 0 and 5, with 5 indicating the highest level of detail orientation. "
71
+ "Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the detail orientation score in INTEGER, not STRING."
72
+ "DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
73
+ "For example, your response should look like this: {''score': 4.8}.",
74
+ },
75
+ ]
76
+ completion = interaction(client, message)
77
+ # Convert response to a Python dictionary.
78
+ response_message = completion.choices[0].message.content
79
+ response_dict = ast.literal_eval(response_message)
80
+ result_qa_pair = [response_dict, qa_set]
81
+ # # Save the question-answer pairs to a json file.
82
+ with open(f"{output_dir}/{key}.json", "w") as f:
83
+ json.dump(result_qa_pair, f)
84
+
85
+ except Exception as e:
86
+ print(f"Error processing file '{key}': {e}")
87
+
88
+ time.sleep(1)
89
+
90
+
91
+ def longest_repeating_substring(s):
92
+ n = len(s)
93
+ dp = [[0] * (n+1) for _ in range(n+1)]
94
+ res = ""
95
+ res_length = 0
96
+
97
+ index = 0
98
+ for i in range(1, n+1):
99
+ for j in range(i+1, n+1):
100
+ if (dp[i-1][j-1] > 0 and dp[i-1][j-1] < (j-i)) or s[i-1] == s[j-1]:
101
+ dp[i][j] = dp[i-1][j-1] + 1
102
+ if dp[i][j] > res_length:
103
+ res_length = dp[i][j]
104
+ index = max(i, index)
105
+ else:
106
+ dp[i][j] = 0
107
+
108
+ if res_length > 0:
109
+ for i in range(index-res_length+1, index+1):
110
+ res = res + s[i-1]
111
+
112
+ return res
113
+
114
+
115
+ def main(args):
116
+ if args.num_chunks > 1:
117
+ pred_contents = []
118
+ for _idx in range(args.num_chunks):
119
+ file = os.path.join(args.pred_path, f"{args.num_chunks}_{_idx}.json")
120
+ pred_contents += [json.loads(line) for line in open(file)]
121
+ else:
122
+ pred_contents = [json.loads(line) for line in open(args.pred_path)]
123
+
124
+ # Dictionary to store the count of occurrences for each video_id
125
+ video_id_counts = {}
126
+ new_pred_contents = []
127
+
128
+ # Iterate through each sample in pred_contents
129
+ for sample in pred_contents:
130
+ video_id = sample["video_name"]
131
+ if video_id in video_id_counts:
132
+ video_id_counts[video_id] += 1
133
+ else:
134
+ video_id_counts[video_id] = 0
135
+
136
+ # Create a new sample with the modified key
137
+ new_sample = sample
138
+ new_sample["video_name"] = f"{video_id.split('/')[-1].split('.')[0]}_{video_id_counts[video_id]}"
139
+ new_pred_contents.append(new_sample)
140
+
141
+ # Generating list of id's and corresponding files
142
+ id_list = [x["video_name"] for x in new_pred_contents]
143
+ caption_files = [f"{id}.json" for id in id_list]
144
+
145
+ output_dir = args.output_dir
146
+ # Generate output directory if not exists.
147
+ if not os.path.exists(output_dir):
148
+ os.makedirs(output_dir)
149
+
150
+ # Preparing dictionary of question-answer sets
151
+ prediction_set = {}
152
+ for sample in new_pred_contents:
153
+ id = sample["video_name"]
154
+ # print(sample)
155
+ question = sample["question"]
156
+ answer = sample["answer"]
157
+ pred = sample["pred"]
158
+ qa_set = {"q": question, "a": answer, "pred": pred}
159
+ prediction_set[id] = qa_set
160
+
161
+ # # Set the OpenAI API key.
162
+ # openai.api_key = args.api_key # Your API key here
163
+ # if args.api_base:
164
+ # openai.api_base = args.api_base # Your API base here
165
+ num_tasks = args.num_tasks
166
+
167
+ # While loop to ensure that all captions are processed.
168
+ while True:
169
+ try:
170
+ # Files that have not been processed yet.
171
+ completed_files = os.listdir(output_dir)
172
+ print(f"completed_files: {len(completed_files)}")
173
+
174
+ # Files that have not been processed yet.
175
+ incomplete_files = [f for f in caption_files if f not in completed_files]
176
+ print(f"incomplete_files: {len(incomplete_files)}")
177
+
178
+ # Break the loop when there are no incomplete files
179
+ if len(incomplete_files) == 0:
180
+ break
181
+ if len(incomplete_files) <= num_tasks:
182
+ num_tasks = 1
183
+
184
+ # Split tasks into parts.
185
+ part_len = len(incomplete_files) // num_tasks
186
+ all_parts = [incomplete_files[i : i + part_len] for i in range(0, len(incomplete_files), part_len)]
187
+ task_args = [(prediction_set, part, args.output_dir) for part in all_parts]
188
+ print("Generate", len(all_parts), "subprocess.")
189
+
190
+ # Use a pool of workers to process the files in parallel.
191
+ # with Pool() as pool:
192
+ # pool.starmap(annotate, task_args)
193
+ # import pdb;pdb.set_trace()
194
+ annotate(*task_args[0])
195
+
196
+ except Exception as e:
197
+ print(f"Error: {e}")
198
+
199
+ # Combine all the processed files into one
200
+ combined_contents = {}
201
+ json_path = args.output_json
202
+
203
+ # Iterate through json files
204
+ for file_name in os.listdir(output_dir):
205
+ if file_name.endswith(".json"):
206
+ file_path = os.path.join(output_dir, file_name)
207
+ with open(file_path, "r") as json_file:
208
+ try:
209
+ content = json.load(json_file)
210
+ combined_contents[file_name[:-5]] = content
211
+ except Exception as e:
212
+ print(f"Error: {e}")
213
+ pass
214
+
215
+ # Calculate average score
216
+ score_sum = 0
217
+ count = 0
218
+ for key, result in combined_contents.items():
219
+ count += 1
220
+ try:
221
+ # key = result[0].keys()[0]
222
+ # import pdb; pdb.set_trace()
223
+ for _ in result[0].keys():
224
+ score_match = result[0][_]
225
+ score = int(score_match)
226
+ score_sum += score
227
+ break
228
+ except Exception as e:
229
+ print(f"Error processing file '{key}': {e}")
230
+ import pdb; pdb.set_trace()
231
+ average_score = score_sum / count
232
+ combined_contents["average_score"] = average_score
233
+ with open(json_path, "w") as json_file:
234
+ json.dump(combined_contents, json_file, indent=4)
235
+ print("Average score for detailedness:", average_score)
236
+
237
+
238
+ if __name__ == "__main__":
239
+ parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
240
+ parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
241
+ parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
242
+ parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
243
+ parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
244
+ parser.add_argument("--num_chunks", default=1, type=int, help="Result splits")
245
+ parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
246
+ parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
247
+ parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
248
+ args = parser.parse_args()
249
+
250
+ # Set the OpenAI API key.
251
+ os.environ["AZURE_OPENAI_KEY"] = args.api_key
252
+ os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
253
+ os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
254
+
255
+ client = init()
256
+
257
+ main(args)
VideoLLaMA2/videollama2/eval/eval_video_mcqa_mvbench.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import argparse
3
+ from tabulate import tabulate
4
+
5
+
6
+ tasks = {
7
+ "Action Sequence": ("action_sequence.json", "star/Charades_v1_480/", "video", True), # has start & end
8
+ "Action Prediction": ("action_prediction.json", "star/Charades_v1_480/", "video", True), # has start & end
9
+ "Action Antonym": ("action_antonym.json", "ssv2_video/", "video", False),
10
+ "Fine-grained Action": ("fine_grained_action.json", "pMoments_in_Time_Raw/videos/", "video", False),
11
+ "Unexpected Action": ("unexpected_action.json", "FunQA_test/test/", "video", False),
12
+ "Object Existence": ("object_existence.json", "clevrer/video_validation/", "video", False),
13
+ "Object Interaction": ("object_interaction.json", "star/Charades_v1_480/", "video", True), # has start & end
14
+ "Object Shuffle": ("object_shuffle.json", "perception/videos/", "video", False),
15
+ "Moving Direction": ("moving_direction.json", "clevrer/video_validation/", "video", False),
16
+ "Action Localization": ("action_localization.json", "sta/sta_video/", "video", True), # has start & end
17
+ "Scene Transition": ("scene_transition.json", "scene_qa/video/", "video", False),
18
+ "Action Count": ("action_count.json", "perception/videos/", "video", False),
19
+ "Moving Count": ("moving_count.json", "clevrer/video_validation/", "video", False),
20
+ "Moving Attribute": ("moving_attribute.json", "clevrer/video_validation/", "video", False),
21
+ "State Change": ("state_change.json", "perception/videos/", "video", False),
22
+ "Fine-grained Pose": ("fine_grained_pose.json", "nturgbd/", "video", False),
23
+ "Character Order": ("character_order.json", "perception/videos/", "video", False),
24
+ "Egocentric Navigation": ("egocentric_navigation.json", "vlnqa/", "video", False),
25
+ "Episodic Reasoning": ("episodic_reasoning.json", "tvqa/frames_fps3_hq/", "frame", True), # has start & end, read frame
26
+ "Counterfactual Inference": ("counterfactual_inference.json", "clevrer/video_validation/", "video", False),
27
+ }
28
+
29
+
30
+ def main():
31
+ args = parse_args()
32
+ res = [eval(x.strip()) for x in open(args.pred_path, 'r').readlines()]
33
+ task_types = tasks.keys()
34
+ task_acc = {x: [] for x in task_types}
35
+ acc = []
36
+ for i, x in enumerate(res):
37
+ value = 1
38
+ if x['pred'] != x['gt']:
39
+ value = 0
40
+ acc.append(value)
41
+ task_acc[x['task_type']].append(value)
42
+ acc = sum(acc) * 100 / len(acc)
43
+ task_acc = {x: sum(task_acc[x]) * 100 / len(task_acc[x]) for x in task_acc}
44
+ print(f"{args.pred_path}:", acc)
45
+ task_names = list(tasks.keys())
46
+
47
+ table_data = []
48
+ for i in range(len(task_names) // 4):
49
+ row_task_names = task_names[i * 4: (i + 1) * 4]
50
+ row_task_acc = [task_acc[x] for x in row_task_names]
51
+ table_data.append(row_task_names)
52
+ table_data.append(row_task_acc)
53
+ print(tabulate(table_data, floatfmt=".1f"), '\n')
54
+
55
+
56
+ def parse_args():
57
+ parser = argparse.ArgumentParser(description="Evaluate video captioning.")
58
+ parser.add_argument("--pred_path", default=r'', help="The path to file containing prediction.")
59
+ args = parser.parse_args()
60
+ return args
61
+
62
+
63
+ if __name__ == '__main__':
64
+ main()
VideoLLaMA2/videollama2/eval/eval_video_mcqa_videomme.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import json
4
+ import argparse
5
+ from typing import List, Dict, Optional, Union
6
+
7
+ CATEGORIES = [
8
+ "Knowledge",
9
+ "Film & Television",
10
+ "Sports Competition",
11
+ "Artistic Performance",
12
+ "Life Record",
13
+ "Multilingual"
14
+ ]
15
+
16
+ SUB_CATEGORIES = [
17
+ "Humanity & History",
18
+ "Literature & Art",
19
+ "Biology & Medicine",
20
+ "Finance & Commerce",
21
+ "Astronomy",
22
+ "Geography",
23
+ "Law",
24
+ "Life Tip",
25
+ "Technology",
26
+ "Animation",
27
+ "Movie & TV Show",
28
+ "Documentary",
29
+ "News Report",
30
+ "Esports",
31
+ "Basketball",
32
+ "Football",
33
+ "Athletics",
34
+ "Other Sports",
35
+ "Stage Play",
36
+ "Magic Show",
37
+ "Variety Show",
38
+ "Acrobatics",
39
+ "Handicraft",
40
+ "Food",
41
+ "Fashion",
42
+ "Daily Life",
43
+ "Travel",
44
+ "Pet & Animal",
45
+ "Exercise",
46
+ "Multilingual"
47
+ ]
48
+
49
+ TASK_CATEGORIES = [
50
+ "Temporal Perception",
51
+ "Spatial Perception",
52
+ "Attribute Perception",
53
+ "Action Recognition",
54
+ "Object Recognition",
55
+ "OCR Problems",
56
+ "Counting Problem",
57
+ "Temporal Reasoning",
58
+ "Spatial Reasoning",
59
+ "Action Reasoning",
60
+ "Object Reasoning",
61
+ "Information Synopsis",
62
+ ]
63
+
64
+
65
+ def extract_characters_regex(s):
66
+ s = s.strip()
67
+ answer_prefixes = [
68
+ "The best answer is",
69
+ "The correct answer is",
70
+ "The answer is",
71
+ "The answer",
72
+ "The best option is"
73
+ "The correct option is",
74
+ "Best answer:"
75
+ "Best option:",
76
+ ]
77
+ for answer_prefix in answer_prefixes:
78
+ s = s.replace(answer_prefix, "")
79
+
80
+ if len(s.split()) > 10 and not re.search("[ABCD]", s):
81
+ return ""
82
+ matches = re.search(r'[ABCD]', s)
83
+ if matches is None:
84
+ return ""
85
+ return matches[0]
86
+
87
+
88
+ def eval_your_results(
89
+ your_results_path: str,
90
+ video_types: Optional[Union[List[str], str]] = None,
91
+ skip_missing: Optional[bool] = True,
92
+ return_categories_accuracy: Optional[bool] = True,
93
+ return_sub_categories_accuracy: Optional[bool] = False,
94
+ return_task_types_accuracy: Optional[bool] = False,
95
+ gt_answer_key: Optional[str] = "answer",
96
+ your_answer_key: Optional[str] = "response"
97
+
98
+ ):
99
+ """
100
+ Evaluate your results against the ground truth
101
+
102
+ Args:
103
+ - your_results_path (str): Path to your results file
104
+ - video_types (Optional[List[str], str]): List of video types to evaluate.
105
+ - skip_missing (Optional[bool]): If True, missing files will be skipped. If False, an error will be raised if there are missing files.
106
+ - return_categories_accuracy (Optional[bool]): If True, the accuracy for each video category will be returned.
107
+ - return_sub_categories_accuracy (Optional[bool]): If True, the accuracy for each video sub category will be returned.
108
+ - return_task_types_accuracy (Optional[bool]): If True, the accuracy for each task category will be returned.
109
+ - gt_answer_key (Optional[str]): Key to access the ground truth answer in the results file.
110
+ - your_answer_key (Optional[str]): Key to access your answer in the results file.
111
+ """
112
+
113
+ # Load your results
114
+ with open(your_results_path, 'r') as f:
115
+ your_results = json.load(f)
116
+
117
+ if isinstance(video_types, str):
118
+ video_types = video_types.split(",")
119
+
120
+ q_type_dict = {}
121
+ v_type_dict = {}
122
+ v_sub_type_dict = {}
123
+
124
+
125
+ for video_type in video_types:
126
+
127
+ # Filter your results based on video types
128
+ your_results_video_type = [item for item in your_results if item["duration"] == video_type]
129
+
130
+ # Task Categories
131
+ q_type_dict[video_type] = {}
132
+ for q_type in TASK_CATEGORIES:
133
+ q_type_dict[video_type][q_type] = {"correct": 0, "answered": 0}
134
+
135
+ # Video categories
136
+ v_type_dict[video_type] = {}
137
+ for v_type in CATEGORIES:
138
+ v_type_dict[video_type][v_type] = {"correct": 0, "answered": 0}
139
+
140
+ v_sub_type_dict[video_type] = {}
141
+ for v_sub_type in SUB_CATEGORIES:
142
+ v_sub_type_dict[video_type][v_sub_type] = {"correct": 0, "answered": 0}
143
+
144
+ if not skip_missing:
145
+ # Check if the number of files in your results and ground truth are the same
146
+ assert len(your_results_video_type) == 300, f"Number of files in {video_type} is not 300. Check if there are missing files."
147
+
148
+ for item in your_results_video_type:
149
+
150
+ if skip_missing and item["missing"]:
151
+ continue
152
+
153
+ # Get the video category, sub category and question category
154
+ video_category = item["domain"]
155
+ video_sub_category = item["sub_category"]
156
+
157
+ questions = item["questions"]
158
+
159
+ for question in questions:
160
+ q_type = question["task_type"]
161
+
162
+ # Get the ground truth and your response
163
+ gt_answer = question[gt_answer_key]
164
+ response = question[your_answer_key]
165
+
166
+ # Extract the answer from the response
167
+ extration = extract_characters_regex(response)
168
+
169
+ if extration != "":
170
+ q_type_dict[video_type][q_type]["answered"] += 1
171
+ q_type_dict[video_type][q_type]["correct"] += extration == gt_answer
172
+
173
+ v_type_dict[video_type][video_category]["answered"] += 1
174
+ v_type_dict[video_type][video_category]["correct"] += extration == gt_answer
175
+
176
+ v_sub_type_dict[video_type][video_sub_category]["answered"] += 1
177
+ v_sub_type_dict[video_type][video_sub_category]["correct"] += extration == gt_answer
178
+
179
+
180
+ # Print the results for each video type
181
+ for video_type in video_types:
182
+
183
+ print("=====================================")
184
+ print(f"Evaluation on video Type: {video_type}")
185
+ print("=====================================")
186
+ if return_categories_accuracy:
187
+ print("-------------------------------------")
188
+ print("Video Domains")
189
+ print("-------------------------------------")
190
+ for v_type in v_type_dict[video_type]:
191
+ print(f"{v_type}: {100 * v_type_dict[video_type][v_type]['correct'] / v_type_dict[video_type][v_type]['answered'] if v_type_dict[video_type][v_type]['answered'] > 0 else 0 : .1f}%")
192
+ if return_sub_categories_accuracy:
193
+ print("-------------------------------------")
194
+ print("Video Sub Categories")
195
+ print("-------------------------------------")
196
+ for v_sub_type in v_sub_type_dict[video_type]:
197
+ print(f"{v_sub_type}: {100 * v_sub_type_dict[video_type][v_sub_type]['correct'] / v_sub_type_dict[video_type][v_sub_type]['answered'] if v_sub_type_dict[video_type][v_sub_type]['answered'] > 0 else 0 : .1f}%")
198
+ if return_task_types_accuracy:
199
+ print("-------------------------------------")
200
+ print("Task Categories")
201
+ print("-------------------------------------")
202
+ for q_type in q_type_dict[video_type]:
203
+ print(f"{q_type}: {100 * q_type_dict[video_type][q_type]['correct'] / q_type_dict[video_type][q_type]['answered'] if q_type_dict[video_type][q_type]['answered'] > 0 else 0 : .1f}%")
204
+
205
+ print("-------------------------------------")
206
+ print("Overall Performance")
207
+ print("-------------------------------------")
208
+ total_correct = sum([q_type_dict[video_type][q_type]["correct"] for q_type in TASK_CATEGORIES])
209
+ total_answered = sum([q_type_dict[video_type][q_type]["answered"] for q_type in TASK_CATEGORIES])
210
+ print(f"Overall: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")
211
+
212
+ print("\n")
213
+
214
+ # Print the results for the entire dataset
215
+ print("=====================================")
216
+ print("Evaluation on the entire dataset")
217
+ print("=====================================")
218
+
219
+ if return_categories_accuracy:
220
+ print("-------------------------------------")
221
+ print("Video Categories")
222
+ print("-------------------------------------")
223
+ for v_type in CATEGORIES:
224
+ total_correct = sum([v_type_dict[video_type][v_type]["correct"] for video_type in video_types])
225
+ total_answered = sum([v_type_dict[video_type][v_type]["answered"] for video_type in video_types])
226
+ print(f"{v_type}: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")
227
+
228
+
229
+ if return_sub_categories_accuracy:
230
+ print("-------------------------------------")
231
+ print("Video Sub Categories")
232
+ print("-------------------------------------")
233
+
234
+ for v_sub_type in SUB_CATEGORIES:
235
+ total_correct = sum([v_sub_type_dict[video_type][v_sub_type]["correct"] for video_type in video_types])
236
+ total_answered = sum([v_sub_type_dict[video_type][v_sub_type]["answered"] for video_type in video_types])
237
+ print(f"{v_sub_type}: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")
238
+
239
+
240
+ if return_task_types_accuracy:
241
+ print("-------------------------------------")
242
+ print("Task Categories")
243
+ print("-------------------------------------")
244
+ for q_type in TASK_CATEGORIES:
245
+
246
+ total_correct = sum([q_type_dict[video_type][q_type]["correct"] for video_type in video_types])
247
+ total_answered = sum([q_type_dict[video_type][q_type]["answered"] for video_type in video_types])
248
+ print(f"{q_type}: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")
249
+
250
+ print("-------------------------------------")
251
+ print("Overall Performance")
252
+ print("-------------------------------------")
253
+ total_correct = sum([sum([q_type_dict[video_type][q_type]["correct"] for q_type in TASK_CATEGORIES]) for video_type in video_types])
254
+ total_answered = sum([sum([q_type_dict[video_type][q_type]["answered"] for q_type in TASK_CATEGORIES]) for video_type in video_types])
255
+ print(f"Overall: {100 * total_correct / total_answered if total_answered > 0 else 0 : .1f}%")
256
+
257
+
258
+
259
+ if __name__ == "__main__":
260
+ parser = argparse.ArgumentParser()
261
+ parser.add_argument("--results_file", type=str, required=True)
262
+ parser.add_argument("--video_duration_type", type=str, required=True)
263
+ parser.add_argument("--return_categories_accuracy", action="store_true")
264
+ parser.add_argument("--return_sub_categories_accuracy", action="store_true")
265
+ parser.add_argument("--return_task_types_accuracy", action="store_true")
266
+ parser.add_argument("--skip_missing", action="store_true")
267
+
268
+ args = parser.parse_args()
269
+
270
+ eval_your_results(
271
+ args.results_file,
272
+ video_types=args.video_duration_type,
273
+ skip_missing=args.skip_missing,
274
+ return_categories_accuracy=args.return_categories_accuracy,
275
+ return_sub_categories_accuracy=args.return_sub_categories_accuracy,
276
+ return_task_types_accuracy=args.return_task_types_accuracy,
277
+ )
VideoLLaMA2/videollama2/eval/eval_video_oqa_activitynet.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import ast
3
+ import json
4
+ import time
5
+ import argparse
6
+ import traceback
7
+ from tqdm import tqdm
8
+ from concurrent.futures import ThreadPoolExecutor, as_completed
9
+
10
+ from openai import AzureOpenAI
11
+
12
+
13
+ def init():
14
+ client = AzureOpenAI(
15
+ azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
16
+ api_key=os.getenv("AZURE_OPENAI_KEY"),
17
+ api_version="2024-02-15-preview"
18
+ )
19
+
20
+ return client
21
+
22
+
23
+ def interaction(client, message_text):
24
+ completion = client.chat.completions.create(
25
+ model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
26
+ messages = message_text,
27
+ temperature=0.7,
28
+ max_tokens=800,
29
+ top_p=0.95,
30
+ frequency_penalty=0,
31
+ presence_penalty=0,
32
+ stop=None
33
+ )
34
+
35
+ return completion
36
+
37
+
38
+ def prompt_gpt(question, answer, pred, key, qa_set, output_dir):
39
+ message = [
40
+ {
41
+ "role": "system",
42
+ "content":
43
+ "You are an intelligent chatbot designed for evaluating the correctness of generative outputs for question-answer pairs. "
44
+ "Your task is to compare the predicted answer with the correct answer and determine if they match meaningfully. Here's how you can accomplish the task:"
45
+ "------"
46
+ "##INSTRUCTIONS: "
47
+ "- Focus on the meaningful match between the predicted answer and the correct answer.\n"
48
+ "- Consider synonyms or paraphrases as valid matches.\n"
49
+ "- Evaluate the correctness of the prediction compared to the answer."
50
+ },
51
+ {
52
+ "role": "user",
53
+ "content":
54
+ "Please evaluate the following video-based question-answer pair:\n\n"
55
+ f"Question: {question}\n"
56
+ f"Correct Answer: {answer}\n"
57
+ f"Predicted Answer: {pred}\n\n"
58
+ "Provide your evaluation only as a yes/no and score where the score is an integer value between 0 and 5, with 5 indicating the highest meaningful match. "
59
+ "Please generate the response in the form of a Python dictionary string with keys 'pred' and 'score', where value of 'pred' is a string of 'yes' or 'no' and value of 'score' is in INTEGER, not STRING."
60
+ "DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
61
+ "For example, your response should look like this: {'pred': 'yes', 'score': 4.8}."
62
+ }
63
+ ]
64
+ completion = interaction(client, message)
65
+ # Convert response to a Python dictionary.
66
+ response_message = completion.choices[0].message.content
67
+ response_dict = ast.literal_eval(response_message)
68
+ result_qa_pair = [response_dict, qa_set]
69
+ # # Save the question-answer pairs to a json file.
70
+ with open(f"{output_dir}/{key}.json", "w") as f:
71
+ json.dump(result_qa_pair, f)
72
+
73
+
74
+ def annotate(task_arg):
75
+ """
76
+ Evaluates question and answer pairs using GPT-3
77
+ Returns a score for correctness.
78
+ """
79
+ prediction_set, caption_files, output_dir, args = task_arg
80
+
81
+ for file in tqdm(caption_files):
82
+ key = file[:-5] # Strip file extension
83
+ qa_set = prediction_set[key]
84
+ question = qa_set['q']
85
+ answer = qa_set['a']
86
+ pred = qa_set['p']
87
+ try:
88
+ prompt_gpt(question, answer, pred, key, qa_set, output_dir)
89
+ except Exception as e:
90
+ prompt_gpt(question, answer, pred[:50], key, qa_set, output_dir)
91
+ traceback.print_exc()
92
+
93
+ time.sleep(1)
94
+
95
+
96
+ def main(args):
97
+
98
+ file = open(args.pred_path)
99
+ new_pred_contents = [eval(i.strip()) for i in file.readlines()]
100
+
101
+ # Generating list of id's and corresponding files
102
+ id_list = [x['id'] for x in new_pred_contents]
103
+ caption_files = [f"{id}.json" for id in id_list]
104
+
105
+ output_dir = args.output_dir
106
+ # Generate output directory if not exists.
107
+ if not os.path.exists(output_dir):
108
+ os.makedirs(output_dir)
109
+
110
+ # Preparing dictionary of question-answer sets
111
+ prediction_set = {}
112
+ for sample in new_pred_contents:
113
+ id = sample['id']
114
+ question = sample['question']
115
+ answer = sample['answer']
116
+ pred = sample['pred']
117
+ qa_set = {"q": question, "a": answer, "p": pred}
118
+ prediction_set[id] = qa_set
119
+
120
+ num_tasks = args.num_tasks
121
+
122
+ # While loop to ensure that all captions are processed.
123
+ while True:
124
+ try:
125
+ # Files that have not been processed yet.
126
+ completed_files = os.listdir(output_dir)
127
+ print(f"completed_files: {len(completed_files)}")
128
+
129
+ # Files that have not been processed yet.
130
+ incomplete_files = [f for f in caption_files if f not in completed_files]
131
+ print(f"incomplete_files: {len(incomplete_files)}")
132
+
133
+ # Break the loop when there are no incomplete files
134
+ if len(incomplete_files) == 0:
135
+ break
136
+ if len(incomplete_files) <= num_tasks:
137
+ num_tasks = 1
138
+
139
+ # Split tasks into parts.
140
+ part_len = len(incomplete_files) // num_tasks
141
+ all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)]
142
+ task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
143
+
144
+ # Use a pool of workers to process the files in parallel.
145
+ with ThreadPoolExecutor(max_workers=args.num_tasks) as executor:
146
+ list(tqdm(executor.map(annotate, task_args), total=len(task_args)))
147
+
148
+ except Exception as e:
149
+ print(f"Error: {e}")
150
+
151
+ # multiprocessing to combine json files
152
+ def combine_json(file_name):
153
+ file_path = os.path.join(output_dir, file_name)
154
+ with open(file_path, "r") as json_file:
155
+ content = json.load(json_file)
156
+ return (file_name[:-5], content)
157
+
158
+ files = os.listdir(output_dir)
159
+ with ThreadPoolExecutor(max_workers=64) as executor:
160
+ combined_contents = list(tqdm(executor.map(combine_json, files), total=len(files)))
161
+
162
+ # Calculate average score and accuracy
163
+ score_sum = 0
164
+ count = 0
165
+ yes_count = 0
166
+ no_count = 0
167
+ for key, result in tqdm(combined_contents):
168
+ try:
169
+ # Computing score
170
+ count += 1
171
+ score_match = result[0]['score']
172
+ score = int(score_match)
173
+ score_sum += score
174
+
175
+ # Computing accuracy
176
+ pred = result[0]['pred']
177
+ if "yes" in pred.lower():
178
+ yes_count += 1
179
+ elif "no" in pred.lower():
180
+ no_count += 1
181
+ except:
182
+ print(result)
183
+
184
+ average_score = score_sum / count
185
+ accuracy = yes_count / (yes_count + no_count)
186
+ print("Yes count:", yes_count)
187
+ print("No count:", no_count)
188
+ print("Accuracy:", accuracy)
189
+ print("Average score:", average_score)
190
+
191
+
192
+ if __name__ == "__main__":
193
+ parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
194
+ parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
195
+ parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
196
+ parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
197
+ parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
198
+ parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
199
+ parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
200
+ parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
201
+ args = parser.parse_args()
202
+
203
+ # Set the OpenAI API key.
204
+ os.environ["AZURE_OPENAI_KEY"] = args.api_key
205
+ os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
206
+ os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
207
+
208
+ client = init()
209
+
210
+ main(args)
VideoLLaMA2/videollama2/eval/eval_video_oqa_vcgpt_1_correctness.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import json
4
+ import ast
5
+ import traceback
6
+ from tqdm import tqdm
7
+ from multiprocessing.pool import Pool
8
+
9
+ from openai import AzureOpenAI
10
+
11
+
12
+ def init():
13
+ client = AzureOpenAI(
14
+ azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
15
+ api_key=os.getenv("AZURE_OPENAI_KEY"),
16
+ api_version="2024-02-15-preview"
17
+ )
18
+
19
+ return client
20
+
21
+
22
+ def interaction(client, message_text):
23
+ completion = client.chat.completions.create(
24
+ model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
25
+ messages = message_text,
26
+ temperature=0.7,
27
+ max_tokens=800,
28
+ top_p=0.95,
29
+ frequency_penalty=0,
30
+ presence_penalty=0,
31
+ stop=None
32
+ )
33
+
34
+ return completion
35
+
36
+
37
+ def annotate(prediction_set, caption_files, output_dir, args):
38
+ """
39
+ Evaluates question and answer pairs using GPT-3
40
+ Returns a score for correctness.
41
+ """
42
+
43
+ for file in tqdm(caption_files):
44
+ key = file[:-5] # Strip file extension
45
+ qa_set = prediction_set[key]
46
+ question = qa_set['q']
47
+ answer = qa_set['a']
48
+ pred = qa_set['p']
49
+ try:
50
+ message = [
51
+ {
52
+ "role": "system",
53
+ "content":
54
+ "You are an intelligent chatbot designed for evaluating the factual accuracy of generative outputs for video-based question-answer pairs. "
55
+ "Your task is to compare the predicted answer with the correct answer and determine if they are factually consistent. Here's how you can accomplish the task:"
56
+ "------"
57
+ "##INSTRUCTIONS: "
58
+ "- Focus on the factual consistency between the predicted answer and the correct answer. The predicted answer should not contain any misinterpretations or misinformation.\n"
59
+ "- The predicted answer must be factually accurate and align with the video content.\n"
60
+ "- Consider synonyms or paraphrases as valid matches.\n"
61
+ "- Evaluate the factual accuracy of the prediction compared to the answer."
62
+ },
63
+ {
64
+ "role": "user",
65
+ "content":
66
+ "Please evaluate the following video-based question-answer pair:\n\n"
67
+ f"Question: {question}\n"
68
+ f"Correct Answer: {answer}\n"
69
+ f"Predicted Answer: {pred}\n\n"
70
+ "Provide your evaluation only as a factual accuracy score where the factual accuracy score is an integer value between 0 and 5, with 5 indicating the highest level of factual consistency. "
71
+ "Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the factual accuracy score in INTEGER, not STRING."
72
+ "DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
73
+ "For example, your response should look like this: {''score': 4.8}."
74
+ }
75
+ ]
76
+ completion = interaction(client, message)
77
+ # Convert response to a Python dictionary.
78
+ response_message = completion.choices[0].message.content
79
+ response_dict = ast.literal_eval(response_message)
80
+ result_qa_pair = [response_dict, qa_set]
81
+
82
+ # Save the question-answer pairs to a json file.
83
+ with open(f"{output_dir}/{key}.json", "w") as f:
84
+ json.dump(result_qa_pair, f)
85
+
86
+ except Exception as e:
87
+ print(f"Error processing file '{key}': {e}")
88
+
89
+
90
+ def main(args):
91
+ pred_contents = [eval(line) for line in open(args.pred_path, 'r').readlines()]
92
+
93
+ # Dictionary to store the count of occurrences for each video_id
94
+ video_id_counts = {}
95
+ new_pred_contents = []
96
+
97
+ # Iterate through each sample in pred_contents
98
+ for sample in pred_contents:
99
+ video_id = sample['video_name']
100
+ if video_id in video_id_counts:
101
+ video_id_counts[video_id] += 1
102
+ else:
103
+ video_id_counts[video_id] = 0
104
+
105
+ # Create a new sample with the modified key
106
+ new_sample = sample
107
+ new_sample['video_name'] = f"{video_id}_{video_id_counts[video_id]}"
108
+ new_pred_contents.append(new_sample)
109
+
110
+ # Generating list of id's and corresponding files
111
+ id_list = [x['video_name'] for x in new_pred_contents]
112
+ caption_files = [f"{id}.json" for id in id_list]
113
+
114
+ output_dir = args.output_dir
115
+ # Generate output directory if not exists.
116
+ if not os.path.exists(output_dir):
117
+ os.makedirs(output_dir)
118
+
119
+ # Preparing dictionary of question-answer sets
120
+ prediction_set = {}
121
+ for sample in new_pred_contents:
122
+ id = sample['video_name']
123
+ question = sample['Q']
124
+ answer = sample['A']
125
+ pred = sample['P']
126
+ qa_set = {"q": question, "a": answer, "p": pred}
127
+ prediction_set[id] = qa_set
128
+
129
+ # Set the OpenAI API key.
130
+ # openai.api_key = args.api_key
131
+ num_tasks = args.num_tasks
132
+
133
+ # While loop to ensure that all captions are processed.
134
+ while True:
135
+ try:
136
+ # Files that have not been processed yet.
137
+ completed_files = os.listdir(output_dir)
138
+ print(f"completed_files: {len(completed_files)}")
139
+
140
+ # Files that have not been processed yet.
141
+ incomplete_files = [f for f in caption_files if f not in completed_files]
142
+ print(f"incomplete_files: {len(incomplete_files)}")
143
+
144
+ # Break the loop when there are no incomplete files
145
+ if len(incomplete_files) == 0:
146
+ break
147
+ if len(incomplete_files) <= num_tasks:
148
+ num_tasks = 1
149
+
150
+ # Split tasks into parts.
151
+ part_len = len(incomplete_files) // num_tasks
152
+ all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)]
153
+ task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
154
+
155
+ # Use a pool of workers to process the files in parallel.
156
+ with Pool() as pool:
157
+ pool.starmap(annotate, task_args)
158
+
159
+ except Exception as e:
160
+ traceback.print_exc()
161
+
162
+ # Combine all the processed files into one
163
+ combined_contents = {}
164
+ json_path = args.output_json
165
+
166
+ # Iterate through json files
167
+ for file_name in tqdm(os.listdir(output_dir)):
168
+ if file_name.endswith(".json"):
169
+ file_path = os.path.join(output_dir, file_name)
170
+ with open(file_path, "r") as json_file:
171
+ content = json.load(json_file)
172
+ combined_contents[file_name[:-5]] = content
173
+
174
+ # Write combined content to a json file
175
+ with open(json_path, "w") as json_file:
176
+ json.dump(combined_contents, json_file)
177
+ print("All evaluation completed!")
178
+
179
+ # Calculate average score
180
+ score_sum = 0
181
+ count = 0
182
+ for key, result in combined_contents.items():
183
+ count += 1
184
+ score_match = result[0]['score']
185
+ score = int(score_match)
186
+ score_sum += score
187
+ average_score = score_sum / count
188
+
189
+ print("Average score for correctness:", average_score)
190
+
191
+
192
+ if __name__ == "__main__":
193
+ parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
194
+ parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
195
+ parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
196
+ parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
197
+ parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
198
+ parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
199
+ parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
200
+ parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
201
+ args = parser.parse_args()
202
+
203
+ # Set the OpenAI API key.
204
+ os.environ["AZURE_OPENAI_KEY"] = args.api_key
205
+ os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
206
+ os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
207
+
208
+ client = init()
209
+
210
+ main(args)
VideoLLaMA2/videollama2/eval/eval_video_oqa_vcgpt_2_detailed_orientation.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import json
4
+ import ast
5
+ from tqdm import tqdm
6
+ from multiprocessing.pool import Pool
7
+
8
+ from openai import AzureOpenAI
9
+
10
+
11
+ def init():
12
+ client = AzureOpenAI(
13
+ azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
14
+ api_key=os.getenv("AZURE_OPENAI_KEY"),
15
+ api_version="2024-02-15-preview"
16
+ )
17
+
18
+ return client
19
+
20
+
21
+ def interaction(client, message_text):
22
+ completion = client.chat.completions.create(
23
+ model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
24
+ messages = message_text,
25
+ temperature=0.7,
26
+ max_tokens=800,
27
+ top_p=0.95,
28
+ frequency_penalty=0,
29
+ presence_penalty=0,
30
+ stop=None
31
+ )
32
+
33
+ return completion
34
+
35
+
36
+ def annotate(prediction_set, caption_files, output_dir, args):
37
+ """
38
+ Evaluates question and answer pairs using GPT-3 and
39
+ returns a score for detailed orientation.
40
+ """
41
+ for file in tqdm(caption_files):
42
+ key = file[:-5] # Strip file extension
43
+ qa_set = prediction_set[key]
44
+ question = qa_set['q']
45
+ answer = qa_set['a']
46
+ pred = qa_set['p']
47
+ try:
48
+ # Compute the detailed-orientation score
49
+ message = [
50
+ {
51
+ "role": "system",
52
+ "content":
53
+ "You are an intelligent chatbot designed for evaluating the detail orientation of generative outputs for video-based question-answer pairs. "
54
+ "Your task is to compare the predicted answer with the correct answer and determine its level of detail, considering both completeness and specificity. Here's how you can accomplish the task:"
55
+ "------"
56
+ "##INSTRUCTIONS: "
57
+ "- Check if the predicted answer covers all major points from the video. The response should not leave out any key aspects.\n"
58
+ "- Evaluate whether the predicted answer includes specific details rather than just generic points. It should provide comprehensive information that is tied to specific elements of the video.\n"
59
+ "- Consider synonyms or paraphrases as valid matches.\n"
60
+ "- Provide a single evaluation score that reflects the level of detail orientation of the prediction, considering both completeness and specificity."
61
+ },
62
+ {
63
+ "role": "user",
64
+ "content":
65
+ "Please evaluate the following video-based question-answer pair:\n\n"
66
+ f"Question: {question}\n"
67
+ f"Correct Answer: {answer}\n"
68
+ f"Predicted Answer: {pred}\n\n"
69
+ "Provide your evaluation only as a detail orientation score where the detail orientation score is an integer value between 0 and 5, with 5 indicating the highest level of detail orientation. "
70
+ "Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the detail orientation score in INTEGER, not STRING."
71
+ "DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
72
+ "For example, your response should look like this: {''score': 4.8}."
73
+ }
74
+ ]
75
+
76
+ completion = interaction(client, message)
77
+ # Convert response to a Python dictionary.
78
+ response_message = completion.choices[0].message.content
79
+ response_dict = ast.literal_eval(response_message)
80
+ result_qa_pair = [response_dict, qa_set]
81
+
82
+ # Save the question-answer pairs to a json file.
83
+ with open(f"{output_dir}/{key}.json", "w") as f:
84
+ json.dump(result_qa_pair, f)
85
+
86
+ except Exception as e:
87
+ print(f"Error processing file '{key}': {e}")
88
+
89
+
90
+ def main(args):
91
+ pred_contents = [eval(line) for line in open(args.pred_path, 'r').readlines()]
92
+
93
+ # Dictionary to store the count of occurrences for each video_id
94
+ video_id_counts = {}
95
+ new_pred_contents = []
96
+
97
+ # Iterate through each sample in pred_contents
98
+ for sample in pred_contents:
99
+ video_id = sample['video_name']
100
+ if video_id in video_id_counts:
101
+ video_id_counts[video_id] += 1
102
+ else:
103
+ video_id_counts[video_id] = 0
104
+
105
+ # Create a new sample with the modified key
106
+ new_sample = sample
107
+ new_sample['video_name'] = f"{video_id}_{video_id_counts[video_id]}"
108
+ new_pred_contents.append(new_sample)
109
+
110
+ # Generating list of id's and corresponding files
111
+ id_list = [x['video_name'] for x in new_pred_contents]
112
+ caption_files = [f"{id}.json" for id in id_list]
113
+
114
+ output_dir = args.output_dir
115
+ # Generate output directory if not exists.
116
+ if not os.path.exists(output_dir):
117
+ os.makedirs(output_dir)
118
+
119
+ # Preparing dictionary of question-answer sets
120
+ prediction_set = {}
121
+ for sample in new_pred_contents:
122
+ id = sample['video_name']
123
+ question = sample['Q']
124
+ answer = sample['A']
125
+ pred = sample['P']
126
+ qa_set = {"q": question, "a": answer, "p": pred}
127
+ prediction_set[id] = qa_set
128
+
129
+ # Set the OpenAI API key.
130
+ # openai.api_key = args.api_key
131
+ num_tasks = args.num_tasks
132
+
133
+ # While loop to ensure that all captions are processed.
134
+ while True:
135
+ try:
136
+ # Files that have not been processed yet.
137
+ completed_files = os.listdir(output_dir)
138
+ print(f"completed_files: {len(completed_files)}")
139
+
140
+ # Files that have not been processed yet.
141
+ incomplete_files = [f for f in caption_files if f not in completed_files]
142
+ print(f"incomplete_files: {len(incomplete_files)}")
143
+
144
+ # Break the loop when there are no incomplete files
145
+ if len(incomplete_files) == 0:
146
+ break
147
+ if len(incomplete_files) <= num_tasks:
148
+ num_tasks = 1
149
+
150
+ # Split tasks into parts.
151
+ part_len = len(incomplete_files) // num_tasks
152
+ all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)]
153
+ task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
154
+
155
+ # Use a pool of workers to process the files in parallel.
156
+ with Pool() as pool:
157
+ pool.starmap(annotate, task_args)
158
+
159
+ except Exception as e:
160
+ print(f"Error: {e}")
161
+
162
+ # Combine all the processed files into one
163
+ combined_contents = {}
164
+ json_path = args.output_json
165
+
166
+ # Iterate through json files
167
+ for file_name in tqdm(os.listdir(output_dir)):
168
+ if file_name.endswith(".json"):
169
+ file_path = os.path.join(output_dir, file_name)
170
+ with open(file_path, "r") as json_file:
171
+ content = json.load(json_file)
172
+ combined_contents[file_name[:-5]] = content
173
+
174
+ # Write combined content to a json file
175
+ with open(json_path, "w") as json_file:
176
+ json.dump(combined_contents, json_file)
177
+ print("All evaluation completed!")
178
+
179
+ # Calculate average score
180
+ score_sum = 0
181
+ count = 0
182
+ for key, result in combined_contents.items():
183
+ count += 1
184
+ score_match = result[0]['score']
185
+ score = int(score_match)
186
+ score_sum += score
187
+ average_score = score_sum / count
188
+
189
+ print("Average score for detailed orientation:", average_score)
190
+
191
+
192
+ if __name__ == "__main__":
193
+ parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
194
+ parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
195
+ parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
196
+ parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
197
+ parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
198
+ parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
199
+ parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
200
+ parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
201
+ args = parser.parse_args()
202
+
203
+ # Set the OpenAI API key.
204
+ os.environ["AZURE_OPENAI_KEY"] = args.api_key
205
+ os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
206
+ os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
207
+
208
+ client = init()
209
+
210
+ main(args)
VideoLLaMA2/videollama2/eval/eval_video_oqa_vcgpt_3_context.py ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import json
4
+ import ast
5
+ import traceback
6
+ from tqdm import tqdm
7
+ from multiprocessing.pool import Pool
8
+
9
+ from openai import AzureOpenAI
10
+
11
+
12
+ def init():
13
+ client = AzureOpenAI(
14
+ azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
15
+ api_key=os.getenv("AZURE_OPENAI_KEY"),
16
+ api_version="2024-02-15-preview"
17
+ )
18
+
19
+ return client
20
+
21
+
22
+ def interaction(client, message_text):
23
+ completion = client.chat.completions.create(
24
+ model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
25
+ messages = message_text,
26
+ temperature=0.7,
27
+ max_tokens=800,
28
+ top_p=0.95,
29
+ frequency_penalty=0,
30
+ presence_penalty=0,
31
+ stop=None
32
+ )
33
+
34
+ return completion
35
+
36
+
37
+ def annotate(prediction_set, caption_files, output_dir, args):
38
+ """
39
+ Evaluates question and answer pairs using GPT-3 and
40
+ returns a score for contextual understanding.
41
+ """
42
+
43
+ for file in tqdm(caption_files):
44
+ key = file[:-5] # Strip file extension
45
+ qa_set = prediction_set[key]
46
+ question = qa_set['q']
47
+ answer = qa_set['a']
48
+ pred = qa_set['p']
49
+ try:
50
+ # Compute the contextual understanding score
51
+ message = [
52
+ {
53
+ "role": "system",
54
+ "content":
55
+ "You are an intelligent chatbot designed for evaluating the contextual understanding of generative outputs for video-based question-answer pairs. "
56
+ "Your task is to compare the predicted answer with the correct answer and determine if the generated response aligns with the overall context of the video content. Here's how you can accomplish the task:"
57
+ "------"
58
+ "##INSTRUCTIONS: "
59
+ "- Evaluate whether the predicted answer aligns with the overall context of the video content. It should not provide information that is out of context or misaligned.\n"
60
+ "- The predicted answer must capture the main themes and sentiments of the video.\n"
61
+ "- Consider synonyms or paraphrases as valid matches.\n"
62
+ "- Provide your evaluation of the contextual understanding of the prediction compared to the answer."
63
+ },
64
+ {
65
+ "role": "user",
66
+ "content":
67
+ "Please evaluate the following video-based question-answer pair:\n\n"
68
+ f"Question: {question}\n"
69
+ f"Correct Answer: {answer}\n"
70
+ f"Predicted Answer: {pred}\n\n"
71
+ "Provide your evaluation only as a contextual understanding score where the contextual understanding score is an integer value between 0 and 5, with 5 indicating the highest level of contextual understanding. "
72
+ "Please generate the response in the form of a Python dictionary string with keys 'score', where its value is contextual understanding score in INTEGER, not STRING."
73
+ "DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
74
+ "For example, your response should look like this: {''score': 4.8}."
75
+ }
76
+ ]
77
+
78
+ completion = interaction(client, message)
79
+ # Convert response to a Python dictionary.
80
+ response_message = completion.choices[0].message.content
81
+ response_dict = ast.literal_eval(response_message)
82
+ result_qa_pair = [response_dict, qa_set]
83
+
84
+ # Save the question-answer pairs to a json file.
85
+ with open(f"{output_dir}/{key}.json", "w") as f:
86
+ json.dump(result_qa_pair, f)
87
+
88
+ except Exception as e:
89
+ print(f"Error processing file '{key}': {e}")
90
+
91
+
92
+ def main(args):
93
+ pred_contents = [eval(line) for line in open(args.pred_path, 'r').readlines()]
94
+
95
+ # Dictionary to store the count of occurrences for each video_id
96
+ video_id_counts = {}
97
+ new_pred_contents = []
98
+
99
+ # Iterate through each sample in pred_contents
100
+ for sample in pred_contents:
101
+ video_id = sample['video_name']
102
+ if video_id in video_id_counts:
103
+ video_id_counts[video_id] += 1
104
+ else:
105
+ video_id_counts[video_id] = 0
106
+
107
+ # Create a new sample with the modified key
108
+ new_sample = sample
109
+ new_sample['video_name'] = f"{video_id}_{video_id_counts[video_id]}"
110
+ new_pred_contents.append(new_sample)
111
+
112
+ # Generating list of id's and corresponding files
113
+ id_list = [x['video_name'] for x in new_pred_contents]
114
+ caption_files = [f"{id}.json" for id in id_list]
115
+
116
+ output_dir = args.output_dir
117
+ # Generate output directory if not exists.
118
+ if not os.path.exists(output_dir):
119
+ os.makedirs(output_dir)
120
+
121
+ # Preparing dictionary of question-answer sets
122
+ prediction_set = {}
123
+ for sample in new_pred_contents:
124
+ id = sample['video_name']
125
+ question = sample['Q']
126
+ answer = sample['A']
127
+ pred = sample['P']
128
+ qa_set = {"q": question, "a": answer, "p": pred}
129
+ prediction_set[id] = qa_set
130
+
131
+ # Set the OpenAI API key.
132
+ # openai.api_key = args.api_key
133
+ num_tasks = args.num_tasks
134
+
135
+ # While loop to ensure that all captions are processed.
136
+ while True:
137
+ try:
138
+ # Files that have not been processed yet.
139
+ completed_files = os.listdir(output_dir)
140
+ print(f"completed_files: {len(completed_files)}")
141
+
142
+ # Files that have not been processed yet.
143
+ incomplete_files = [f for f in caption_files if f not in completed_files]
144
+ print(f"incomplete_files: {len(incomplete_files)}")
145
+
146
+ # Break the loop when there are no incomplete files
147
+ if len(incomplete_files) == 0:
148
+ break
149
+ if len(incomplete_files) <= num_tasks:
150
+ num_tasks = 1
151
+
152
+ # Split tasks into parts.
153
+ part_len = len(incomplete_files) // num_tasks
154
+ all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)]
155
+ task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
156
+
157
+ # Use a pool of workers to process the files in parallel.
158
+ with Pool() as pool:
159
+ pool.starmap(annotate, task_args)
160
+
161
+ except Exception as e:
162
+ print(f"Error: {e}")
163
+
164
+ # Combine all the processed files into one
165
+ combined_contents = {}
166
+ json_path = args.output_json
167
+
168
+ # Iterate through json files
169
+ for file_name in tqdm(os.listdir(output_dir)):
170
+ if file_name.endswith(".json"):
171
+ file_path = os.path.join(output_dir, file_name)
172
+ with open(file_path, "r") as json_file:
173
+ content = json.load(json_file)
174
+ combined_contents[file_name[:-5]] = content
175
+
176
+ # Write combined content to a json file
177
+ with open(json_path, "w") as json_file:
178
+ json.dump(combined_contents, json_file)
179
+ print("All evaluation completed!")
180
+
181
+ # Calculate average score
182
+ score_sum = 0
183
+ count = 0
184
+ for key, result in combined_contents.items():
185
+ count += 1
186
+ score_match = result[0]['score']
187
+ score = int(score_match)
188
+ score_sum += score
189
+ average_score = score_sum / count
190
+
191
+ print("Average score for contextual understanding:", average_score)
192
+
193
+
194
+ if __name__ == "__main__":
195
+ parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
196
+ parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
197
+ parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
198
+ parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
199
+ parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
200
+ parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
201
+ parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
202
+ parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
203
+ args = parser.parse_args()
204
+
205
+ # Set the OpenAI API key.
206
+ os.environ["AZURE_OPENAI_KEY"] = args.api_key
207
+ os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
208
+ os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
209
+
210
+ client = init()
211
+
212
+ main(args)
VideoLLaMA2/videollama2/eval/eval_video_oqa_vcgpt_4_temporal.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import json
4
+ import ast
5
+ import traceback
6
+ from tqdm import tqdm
7
+ from multiprocessing.pool import Pool
8
+
9
+ from openai import AzureOpenAI
10
+
11
+
12
+ def init():
13
+ client = AzureOpenAI(
14
+ azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
15
+ api_key=os.getenv("AZURE_OPENAI_KEY"),
16
+ api_version="2024-02-15-preview"
17
+ )
18
+
19
+ return client
20
+
21
+
22
+ def interaction(client, message_text):
23
+ completion = client.chat.completions.create(
24
+ model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
25
+ messages = message_text,
26
+ temperature=0.7,
27
+ max_tokens=800,
28
+ top_p=0.95,
29
+ frequency_penalty=0,
30
+ presence_penalty=0,
31
+ stop=None
32
+ )
33
+
34
+ return completion
35
+
36
+
37
+ def annotate(prediction_set, caption_files, output_dir, args):
38
+
39
+ for file in tqdm(caption_files):
40
+ key = file[:-5] # Strip file extension
41
+ qa_set = prediction_set[key]
42
+ question = qa_set['q']
43
+ answer = qa_set['a']
44
+ pred = qa_set['p']
45
+ try:
46
+ message = [
47
+ {
48
+ "role": "system",
49
+ "content":
50
+ "You are an intelligent chatbot designed for evaluating the temporal understanding of generative outputs for video-based question-answer pairs. "
51
+ "Your task is to compare the predicted answer with the correct answer and determine if they correctly reflect the temporal sequence of events in the video content. Here's how you can accomplish the task:"
52
+ "------"
53
+ "##INSTRUCTIONS: "
54
+ "- Focus on the temporal consistency between the predicted answer and the correct answer. The predicted answer should correctly reflect the sequence of events or details as they are presented in the video content.\n"
55
+ "- Consider synonyms or paraphrases as valid matches, but only if the temporal order is maintained.\n"
56
+ "- Evaluate the temporal accuracy of the prediction compared to the answer."
57
+ },
58
+ {
59
+ "role": "user",
60
+ "content":
61
+ "Please evaluate the following video-based question-answer pair:\n\n"
62
+ f"Question: {question}\n"
63
+ f"Correct Answer: {answer}\n"
64
+ f"Predicted Answer: {pred}\n\n"
65
+ "Provide your evaluation only as a temporal accuracy score where the temporal accuracy score is an integer value between 0 and 5, with 5 indicating the highest level of temporal consistency. "
66
+ "Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the temporal accuracy score in INTEGER, not STRING."
67
+ "DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
68
+ "For example, your response should look like this: {''score': 4.8}."
69
+ }
70
+ ]
71
+
72
+ completion = interaction(client, message)
73
+ # Convert response to a Python dictionary.
74
+ response_message = completion.choices[0].message.content
75
+ response_dict = ast.literal_eval(response_message)
76
+ result_qa_pair = [response_dict, qa_set]
77
+
78
+ # Save the question-answer pairs to a json file.
79
+ with open(f"{output_dir}/{key}.json", "w") as f:
80
+ json.dump(result_qa_pair, f)
81
+
82
+ except Exception as e:
83
+ print(f"Error processing file '{key}': {e}")
84
+
85
+
86
+ def main(args):
87
+ pred_contents = [eval(line) for line in open(args.pred_path, 'r').readlines()]
88
+
89
+ # Dictionary to store the count of occurrences for each video_id
90
+ video_id_counts = {}
91
+ new_pred_contents = []
92
+
93
+ # Iterate through each sample in pred_contents
94
+ for sample in pred_contents:
95
+ video_id = sample['video_name']
96
+ if video_id in video_id_counts:
97
+ video_id_counts[video_id] += 1
98
+ else:
99
+ video_id_counts[video_id] = 0
100
+
101
+ # Create a new sample with the modified key
102
+ new_sample = sample
103
+ new_sample['video_name'] = f"{video_id}_{video_id_counts[video_id]}"
104
+ new_pred_contents.append(new_sample)
105
+
106
+ # Generating list of id's and corresponding files
107
+ id_list = [x['video_name'] for x in new_pred_contents]
108
+ caption_files = [f"{id}.json" for id in id_list]
109
+
110
+ output_dir = args.output_dir
111
+ # Generate output directory if not exists.
112
+ if not os.path.exists(output_dir):
113
+ os.makedirs(output_dir)
114
+
115
+ # Preparing dictionary of question-answer sets
116
+ prediction_set = {}
117
+ for sample in new_pred_contents:
118
+ id = sample['video_name']
119
+ question = sample['Q']
120
+ answer = sample['A']
121
+ pred = sample['P']
122
+ qa_set = {"q": question, "a": answer, "p": pred}
123
+ prediction_set[id] = qa_set
124
+
125
+ # Set the OpenAI API key.
126
+ # openai.api_key = args.api_key
127
+ num_tasks = args.num_tasks
128
+
129
+ # While loop to ensure that all captions are processed.
130
+ while True:
131
+ try:
132
+ # Files that have not been processed yet.
133
+ completed_files = os.listdir(output_dir)
134
+ print(f"completed_files: {len(completed_files)}")
135
+
136
+ # Files that have not been processed yet.
137
+ incomplete_files = [f for f in caption_files if f not in completed_files]
138
+ print(f"incomplete_files: {len(incomplete_files)}")
139
+
140
+ # Break the loop when there are no incomplete files
141
+ if len(incomplete_files) == 0:
142
+ break
143
+ if len(incomplete_files) <= num_tasks:
144
+ num_tasks = 1
145
+
146
+ # Split tasks into parts.
147
+ part_len = len(incomplete_files) // num_tasks
148
+ all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)]
149
+ task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
150
+
151
+ # Use a pool of workers to process the files in parallel.
152
+ with Pool() as pool:
153
+ pool.starmap(annotate, task_args)
154
+
155
+ except Exception as e:
156
+ print(f"Error: {e}")
157
+
158
+ # Combine all the processed files into one
159
+ combined_contents = {}
160
+ json_path = args.output_json
161
+
162
+ # Iterate through json files
163
+ for file_name in os.listdir(output_dir):
164
+ if file_name.endswith(".json"):
165
+ file_path = os.path.join(output_dir, file_name)
166
+ with open(file_path, "r") as json_file:
167
+ content = json.load(json_file)
168
+ combined_contents[file_name[:-5]] = content
169
+
170
+ # Write combined content to a json file
171
+ with open(json_path, "w") as json_file:
172
+ json.dump(combined_contents, json_file)
173
+ print("All evaluation completed!")
174
+
175
+ # Calculate average score
176
+ score_sum = 0
177
+ count = 0
178
+ for key, result in combined_contents.items():
179
+ count += 1
180
+ score_match = result[0]['score']
181
+ score = int(score_match)
182
+ score_sum += score
183
+ average_score = score_sum / count
184
+
185
+ print("Average score temporal understanding:", average_score)
186
+
187
+
188
+ if __name__ == "__main__":
189
+ parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
190
+ parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
191
+ parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
192
+ parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
193
+ parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
194
+ parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
195
+ parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
196
+ parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
197
+ args = parser.parse_args()
198
+
199
+ # Set the OpenAI API key.
200
+ os.environ["AZURE_OPENAI_KEY"] = args.api_key
201
+ os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
202
+ os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
203
+
204
+ client = init()
205
+
206
+ main(args)
VideoLLaMA2/videollama2/eval/eval_video_oqa_vcgpt_5_consistency.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import json
4
+ import ast
5
+ import traceback
6
+ from tqdm import tqdm
7
+ from multiprocessing.pool import Pool
8
+
9
+ from openai import AzureOpenAI
10
+
11
+
12
+ def init():
13
+ client = AzureOpenAI(
14
+ azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
15
+ api_key=os.getenv("AZURE_OPENAI_KEY"),
16
+ api_version="2024-02-15-preview"
17
+ )
18
+
19
+ return client
20
+
21
+
22
+ def interaction(client, message_text):
23
+ completion = client.chat.completions.create(
24
+ model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
25
+ messages = message_text,
26
+ temperature=0.7,
27
+ max_tokens=800,
28
+ top_p=0.95,
29
+ frequency_penalty=0,
30
+ presence_penalty=0,
31
+ stop=None
32
+ )
33
+
34
+ return completion
35
+
36
+
37
+ def annotate(prediction_set, caption_files, output_dir, args):
38
+ """
39
+ Evaluates question and answer pairs using GPT-3 and
40
+ returns a score for consistency.
41
+ """
42
+
43
+ for file in tqdm(caption_files):
44
+ key = file[:-5] # Strip file extension
45
+ qa_set = prediction_set[key]
46
+ question1 = qa_set['q1']
47
+ question2 = qa_set['q2']
48
+ answer = qa_set['a']
49
+ pred1 = qa_set['p1']
50
+ pred2 = qa_set['p2']
51
+ try:
52
+ message = [
53
+ {
54
+ "role": "system",
55
+ "content":
56
+ "You are an intelligent chatbot designed for evaluating the consistency of generative outputs for similar video-based question-answer pairs. "
57
+ "You will be given two very similar questions, a common answer common to both the questions and predicted answers for the two questions ."
58
+ "Your task is to compare the predicted answers for two very similar question, with a common correct answer and determine if they are consistent. Here's how you can accomplish the task:"
59
+ "------"
60
+ "##INSTRUCTIONS: "
61
+ "- Focus on the consistency between the two predicted answers and the correct answer. Both predicted answers should correspond to the correct answer and to each other, and should not contain any contradictions or significant differences in the conveyed information.\n"
62
+ "- Both predicted answers must be consistent with each other and the correct answer, in terms of the information they provide about the video content.\n"
63
+ "- Consider synonyms or paraphrases as valid matches, but only if they maintain the consistency in the conveyed information.\n"
64
+ "- Evaluate the consistency of the two predicted answers compared to the correct answer."
65
+ },
66
+ {
67
+ "role": "user",
68
+ "content":
69
+ "Please evaluate the following video-based question-answer pair:\n\n"
70
+ f"Question 1: {question1}\n"
71
+ f"Question 2: {question2}\n"
72
+ f"Correct Answer: {answer}\n"
73
+ f"Predicted Answer to Question 1: {pred1}\n"
74
+ f"Predicted Answer to Question 2: {pred2}\n\n"
75
+ "Provide your evaluation only as a consistency score where the consistency score is an integer value between 0 and 5, with 5 indicating the highest level of consistency. "
76
+ "Please generate the response in the form of a Python dictionary string with keys 'score', where its value is the consistency score in INTEGER, not STRING."
77
+ "DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
78
+ "For example, your response should look like this: {''score': 4.8}."
79
+ }
80
+ ]
81
+
82
+ completion = interaction(client, message)
83
+ # Convert response to a Python dictionary.
84
+ response_message = completion.choices[0].message.content
85
+ response_dict = ast.literal_eval(response_message)
86
+ result_qa_pair = [response_dict, qa_set]
87
+
88
+ # Save the question-answer pairs to a json file.
89
+ with open(f"{output_dir}/{key}.json", "w") as f:
90
+ json.dump(result_qa_pair, f)
91
+
92
+ except Exception as e:
93
+ print(f"Error processing file '{key}': {e}")
94
+
95
+
96
+ def main(args):
97
+ pred_contents = [eval(line) for line in open(args.pred_path, 'r').readlines()]
98
+
99
+ # Dictionary to store the count of occurrences for each video_id
100
+ video_id_counts = {}
101
+ new_pred_contents = []
102
+
103
+ # Iterate through each sample in pred_contents
104
+ for sample in pred_contents:
105
+ video_id = sample['video_name']
106
+ if video_id in video_id_counts:
107
+ video_id_counts[video_id] += 1
108
+ else:
109
+ video_id_counts[video_id] = 0
110
+
111
+ # Create a new sample with the modified key
112
+ new_sample = sample
113
+ new_sample['video_name'] = f"{video_id}_{video_id_counts[video_id]}"
114
+ new_pred_contents.append(new_sample)
115
+
116
+ # Generating list of id's and corresponding files
117
+ id_list = [x['video_name'] for x in new_pred_contents]
118
+ caption_files = [f"{id}.json" for id in id_list]
119
+
120
+ output_dir = args.output_dir
121
+ # Generate output directory if not exists.
122
+ if not os.path.exists(output_dir):
123
+ os.makedirs(output_dir)
124
+
125
+ # Preparing dictionary of question-answer sets
126
+ prediction_set = {}
127
+ for sample in new_pred_contents:
128
+ id = sample['video_name']
129
+ question1 = sample['Q1']
130
+ question2 = sample['Q2']
131
+ answer = sample['A']
132
+ pred1 = sample['P1']
133
+ pred2 = sample['P2']
134
+ qa_set = {"q1": question1, "q2": question2, "a": answer, "p1": pred1, "p2": pred2}
135
+ prediction_set[id] = qa_set
136
+
137
+ # Set the OpenAI API key.
138
+ # openai.api_key = args.api_key
139
+ num_tasks = args.num_tasks
140
+
141
+ # While loop to ensure that all captions are processed.
142
+ while True:
143
+ try:
144
+ # Files that have not been processed yet.
145
+ completed_files = os.listdir(output_dir)
146
+ print(f"completed_files: {len(completed_files)}")
147
+
148
+ # Files that have not been processed yet.
149
+ incomplete_files = [f for f in caption_files if f not in completed_files]
150
+ print(f"incomplete_files: {len(incomplete_files)}")
151
+
152
+ # Break the loop when there are no incomplete files
153
+ if len(incomplete_files) == 0:
154
+ break
155
+ if len(incomplete_files) <= num_tasks:
156
+ num_tasks = 1
157
+
158
+ # Split tasks into parts.
159
+ part_len = len(incomplete_files) // num_tasks
160
+ all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)]
161
+ task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
162
+
163
+ # Use a pool of workers to process the files in parallel.
164
+ with Pool() as pool:
165
+ pool.starmap(annotate, task_args)
166
+
167
+ except Exception as e:
168
+ print(f"Error: {e}")
169
+
170
+ # Combine all the processed files into one
171
+ combined_contents = {}
172
+ json_path = args.output_json
173
+
174
+ # Iterate through json files
175
+ for file_name in os.listdir(output_dir):
176
+ if file_name.endswith(".json"):
177
+ file_path = os.path.join(output_dir, file_name)
178
+ with open(file_path, "r") as json_file:
179
+ content = json.load(json_file)
180
+ combined_contents[file_name[:-5]] = content
181
+
182
+ # Write combined content to a json file
183
+ with open(json_path, "w") as json_file:
184
+ json.dump(combined_contents, json_file)
185
+ print("All evaluation completed!")
186
+
187
+ # Calculate average score
188
+ score_sum = 0
189
+ count = 0
190
+ for key, result in combined_contents.items():
191
+ count += 1
192
+ score_match = result[0]['score']
193
+ score = int(score_match)
194
+ score_sum += score
195
+ average_score = score_sum / count
196
+
197
+ print("Average score for consistency:", average_score)
198
+
199
+
200
+ if __name__ == "__main__":
201
+ parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
202
+ parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
203
+ parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
204
+ parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
205
+ parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
206
+ parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
207
+ parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
208
+ parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
209
+ args = parser.parse_args()
210
+
211
+ # Set the OpenAI API key.
212
+ os.environ["AZURE_OPENAI_KEY"] = args.api_key
213
+ os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
214
+ os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
215
+
216
+ client = init()
217
+
218
+ main(args)
VideoLLaMA2/videollama2/eval/inference_video_cap_msvc.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import argparse
4
+ import json
5
+ import warnings
6
+ from tqdm import tqdm
7
+
8
+ from torch.utils.data import Dataset, DataLoader
9
+
10
+ import sys
11
+ sys.path.append('./')
12
+ from videollama2 import model_init, mm_infer
13
+ from videollama2.utils import disable_torch_init
14
+
15
+ # NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
16
+ warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
17
+
18
+
19
+ def split_list(lst, n):
20
+ """Split a list into n (roughly) equal-sized chunks"""
21
+ chunk_size = math.ceil(len(lst) / n) # integer division
22
+ return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
23
+
24
+
25
+ def get_chunk(lst, n, k):
26
+ chunks = split_list(lst, n)
27
+ return chunks[k]
28
+
29
+
30
+ class MSVCDataset(Dataset):
31
+
32
+ video_formats = ['.mp4', '.webm', '.avi', '.mov', '.mkv']
33
+
34
+ def __init__(self, folder, questions, processor):
35
+ self.folder = folder
36
+ self.questions = questions
37
+ self.processor = processor
38
+
39
+ def __len__(self):
40
+ return len(self.questions)
41
+
42
+ def __getitem__(self, idx):
43
+ sample = self.questions[idx]
44
+
45
+ video_name = sample['video_path']
46
+ question = sample['question']
47
+ answer = sample['captions']
48
+
49
+ video_path = os.path.join(self.folder, video_name)
50
+ video_tensor = self.processor(video_path)
51
+
52
+ return {
53
+ 'video': video_tensor,
54
+ 'video_name': video_name,
55
+ 'question': question,
56
+ 'answer': answer,
57
+ }
58
+
59
+
60
+ def collate_fn(batch):
61
+ vid = [x['video'] for x in batch]
62
+ v_id = [x['video_name'] for x in batch]
63
+ qus = [x['question'] for x in batch]
64
+ ans = [x['answer'] for x in batch]
65
+ return vid, v_id, qus, ans
66
+
67
+
68
+ def run_inference(args):
69
+ disable_torch_init()
70
+
71
+ model, processor, tokenizer = model_init(args.model_path)
72
+
73
+ gt_questions = json.load(open(args.question_file, "r"))
74
+ gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
75
+
76
+ answer_file = os.path.join(args.output_file)
77
+ os.makedirs(os.path.dirname(args.output_file), exist_ok=True)
78
+ ans_file = open(answer_file, "w")
79
+
80
+ assert args.batch_size == 1, "Batch size must be 1 for inference"
81
+ dataset = MSVCDataset(args.video_folder, gt_questions, processor['video'])
82
+ dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)
83
+
84
+ # Iterate over each sample in the ground truth file
85
+ for idx, (video_tensors, video_names, questions, answers) in enumerate(tqdm(dataloader)):
86
+ video_tensor = video_tensors[0]
87
+ video_name = video_names[0]
88
+ question = questions[0]
89
+ answer = answers[0]
90
+
91
+ output = mm_infer(
92
+ video_tensor,
93
+ question,
94
+ model=model,
95
+ tokenizer=tokenizer,
96
+ modal='video',
97
+ do_sample=False,
98
+ )
99
+
100
+ sample_set = {'video_name': video_name, 'question': question, 'answer': answer, 'pred': output}
101
+ ans_file.write(json.dumps(sample_set) + "\n")
102
+
103
+ ans_file.close()
104
+
105
+
106
+ if __name__ == "__main__":
107
+ parser = argparse.ArgumentParser()
108
+
109
+ parser.add_argument('--model-path', help='', required=True)
110
+ parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
111
+ parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
112
+ parser.add_argument('--output-file', help='Directory to save the model results JSON.', required=True)
113
+ parser.add_argument("--num-chunks", type=int, default=1)
114
+ parser.add_argument("--chunk-idx", type=int, default=0)
115
+ parser.add_argument("--device", type=str, required=False, default='cuda:0')
116
+ parser.add_argument("--batch-size", type=int, required=False, default=1)
117
+ parser.add_argument("--num-workers", type=int, required=False, default=8)
118
+ args = parser.parse_args()
119
+
120
+ run_inference(args)
VideoLLaMA2/videollama2/eval/inference_video_mcqa_egoschema.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import math
4
+ import json
5
+ import argparse
6
+ import warnings
7
+ import traceback
8
+
9
+ from tqdm import tqdm
10
+ from torch.utils.data import Dataset, DataLoader
11
+
12
+ import sys
13
+ sys.path.append('./')
14
+ from videollama2 import model_init, mm_infer
15
+ from videollama2.utils import disable_torch_init
16
+
17
+ # NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
18
+ warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
19
+
20
+
21
+ def split_list(lst, n):
22
+ """Split a list into n (roughly) equal-sized chunks"""
23
+ chunk_size = math.ceil(len(lst) / n) # integer division
24
+ return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
25
+
26
+
27
+ def get_chunk(lst, n, k):
28
+ chunks = split_list(lst, n)
29
+ return chunks[k]
30
+
31
+
32
+ class EgoschemaDataset(Dataset):
33
+
34
+ video_formats = ['.mp4', '.avi', '.mov', '.mkv']
35
+
36
+ def __init__(self, data_folder, data_list, processor):
37
+ self.data_folder = data_folder
38
+ self.data_list = data_list
39
+ self.processor = processor
40
+
41
+ def __len__(self):
42
+ return len(self.data_list)
43
+
44
+ def __getitem__(self, idx):
45
+ line = self.data_list[idx]
46
+ q_uid = line['q_uid']
47
+
48
+ for fmt in self.video_formats: # Added this line
49
+ temp_path = os.path.join(self.data_folder, f"{q_uid}{fmt}")
50
+ if os.path.exists(temp_path):
51
+ video_path = temp_path
52
+ break
53
+
54
+ video_tensor = self.processor(video_path)
55
+
56
+ question = line['question']
57
+ a0 = line['option 0']
58
+ a1 = line['option 1']
59
+ a2 = line['option 2']
60
+ a3 = line['option 3']
61
+ a4 = line['option 4']
62
+ axs = [a0, a1, a2, a3, a4]
63
+ ops = ['(A)', '(B)', '(C)', '(D)', '(E)']
64
+
65
+ instruct = f'Select the best answer to the following multiple-choice question based on the video.\n{question}\nOptions:\n(A) {a0}\n(B) {a1}\n(C) {a2}\n(D) {a3}\n(E) {a4}\nAnswer with the option\'s letter from the given choices directly and only give the best option. The best answer is: '
66
+
67
+ return {
68
+ 'q_uid': q_uid,
69
+ 'video': video_tensor,
70
+ 'instruct': instruct,
71
+ }
72
+
73
+
74
+ def build_egoschema_eval(args, processor):
75
+ questions = json.load(open(args.question_file, "r"))
76
+ questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
77
+ dataset = EgoschemaDataset(args.video_folder, questions, processor)
78
+ dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
79
+
80
+ return dataloader
81
+
82
+
83
+ def egoschema_dump(ans_file, line, outputs):
84
+ for idx, output in enumerate(outputs):
85
+ q_uid = line['q_uid'][idx]
86
+ instruct = line['instruct'][idx]
87
+ letters = ['A', 'B', 'C', 'D', 'E']
88
+
89
+ output = output.replace('answer', '')
90
+ output = output.replace('Answer', '')
91
+ pred_answer = re.findall('[\(\ ]*[A-E][\)\ ]*', output)
92
+ try:
93
+
94
+ assert len(pred_answer) >= 1, 'The video \"{}\" instruct: \n\"{}\"\n output: \n\"{}\"\n is not in the expected format'.format(line['q_uid'], instruct, output)
95
+ pred_answer = pred_answer[0].strip()
96
+ pred_answer = pred_answer.strip('()')
97
+ pred_idx = letters.index(pred_answer)
98
+ except:
99
+ traceback.print_exc()
100
+ pred_idx = 2
101
+
102
+ ans_file.write(f'{q_uid}, {pred_idx}\n')
103
+
104
+
105
+ def run_inference(args):
106
+ disable_torch_init()
107
+
108
+ model, processor, tokenizer = model_init(args.model_path)
109
+
110
+ answer_file = os.path.expanduser(args.answer_file)
111
+ os.makedirs(os.path.dirname(answer_file), exist_ok=True)
112
+ ans_file = open(answer_file, "w")
113
+
114
+ val_loader = build_egoschema_eval(args, processor['video'])
115
+
116
+ # Iterate over each sample in the ground truth file
117
+ for i, line in enumerate(tqdm(val_loader)):
118
+ video_tensor = line['video'][0]
119
+ instruct = line['instruct'][0]
120
+
121
+ try:
122
+ pred = mm_infer(
123
+ video_tensor,
124
+ instruct,
125
+ model=model,
126
+ tokenizer=tokenizer,
127
+ modal='video',
128
+ do_sample=False,
129
+ )
130
+ except:
131
+ traceback.print_exc()
132
+ pred = 'C'
133
+
134
+ egoschema_dump(ans_file, line, [pred])
135
+
136
+ ans_file.close()
137
+
138
+
139
+ if __name__ == "__main__":
140
+ parser = argparse.ArgumentParser(description='Multiple-Choice Video QA Evaluation Script.')
141
+
142
+ parser.add_argument('--model-path', help='', required=True)
143
+ parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
144
+ parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
145
+ parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
146
+ parser.add_argument("--num-chunks", type=int, default=1)
147
+ parser.add_argument("--chunk-idx", type=int, default=0)
148
+ parser.add_argument("--device", type=str, required=False, default='cuda:0')
149
+ parser.add_argument("--batch-size", type=int, default=1)
150
+ parser.add_argument("--num-workers", type=int, default=8)
151
+ args = parser.parse_args()
152
+
153
+ run_inference(args)
VideoLLaMA2/videollama2/eval/inference_video_mcqa_mvbench.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import math
4
+ import json
5
+ import argparse
6
+ import warnings
7
+ import traceback
8
+
9
+ import torch
10
+ import numpy as np
11
+ from PIL import Image
12
+ from tqdm import tqdm
13
+ from decord import VideoReader, cpu
14
+ from torch.utils.data import Dataset, DataLoader
15
+
16
+ import sys
17
+ sys.path.append('./')
18
+ from videollama2 import model_init, mm_infer
19
+ from videollama2.utils import disable_torch_init
20
+
21
+ # NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
22
+ warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
23
+
24
+
25
+ def split_list(lst, n):
26
+ """Split a list into n (roughly) equal-sized chunks"""
27
+ chunk_size = math.ceil(len(lst) / n) # integer division
28
+ return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
29
+
30
+
31
+ def get_chunk(lst, n, k):
32
+ chunks = split_list(lst, n)
33
+ return chunks[k]
34
+
35
+
36
+ class MVBenchDataset(Dataset):
37
+
38
+ def __init__(self, data_list, processor):
39
+ self.data_list = data_list
40
+ self.processor = processor
41
+
42
+ def __len__(self):
43
+ return len(self.data_list)
44
+
45
+ def __getitem__(self, idx):
46
+ bound = (None, None)
47
+ if self.data_list[idx]['bound']:
48
+ bound = (self.data_list[idx]['data']['start'], self.data_list[idx]['data']['end'])
49
+ video_path = os.path.join(self.data_list[idx]['prefix'], self.data_list[idx]['data']['video'])
50
+ torch_imgs = self.processor(video_path, s=bound[0], e=bound[1])
51
+ question = self.data_list[idx]['data']['question']
52
+ options = self.data_list[idx]['data']['candidates']
53
+ answer = self.data_list[idx]['data']['answer']
54
+ task_type = self.data_list[idx]['task_type']
55
+
56
+ answer_idx = -1
57
+ letters = []
58
+ options_string = ''
59
+ for option_idx, c in enumerate(options):
60
+ letters.append(f"{chr(ord('A') + option_idx)}")
61
+ options_string += f"({chr(ord('A') + option_idx)}) {c}\n"
62
+ if c == answer:
63
+ answer_idx = option_idx
64
+
65
+ instruct = f'Question: {question}\nOptions:\n{options_string}Answer with the option\'s letter from the given choices directly and only give the best option.'
66
+
67
+ return {
68
+ 'video': torch_imgs,
69
+ 'video_path': video_path,
70
+ 'instruct': instruct,
71
+ 'letters': letters,
72
+ 'options': options,
73
+ 'answer_idx': answer_idx,
74
+ 'task_type': task_type
75
+ }
76
+
77
+
78
+ tasks = {
79
+ "Action Sequence": ("action_sequence.json", "star/Charades_v1_480/", "video", True), # has start & end
80
+ "Action Prediction": ("action_prediction.json", "star/Charades_v1_480/", "video", True), # has start & end
81
+ "Action Antonym": ("action_antonym.json", "ssv2_video/", "video", False),
82
+ "Fine-grained Action": ("fine_grained_action.json", "Moments_in_Time_Raw/videos/", "video", False),
83
+ "Unexpected Action": ("unexpected_action.json", "FunQA_test/test/", "video", False),
84
+ "Object Existence": ("object_existence.json", "clevrer/video_validation/", "video", False),
85
+ "Object Interaction": ("object_interaction.json", "star/Charades_v1_480/", "video", True), # has start & end
86
+ "Object Shuffle": ("object_shuffle.json", "perception/videos/", "video", False),
87
+ "Moving Direction": ("moving_direction.json", "clevrer/video_validation/", "video", False),
88
+ "Action Localization": ("action_localization.json", "sta/sta_video/", "video", True), # has start & end
89
+ "Scene Transition": ("scene_transition.json", "scene_qa/video/", "video", False),
90
+ "Action Count": ("action_count.json", "perception/videos/", "video", False),
91
+ "Moving Count": ("moving_count.json", "clevrer/video_validation/", "video", False),
92
+ "Moving Attribute": ("moving_attribute.json", "clevrer/video_validation/", "video", False),
93
+ "State Change": ("state_change.json", "perception/videos/", "video", False),
94
+ "Fine-grained Pose": ("fine_grained_pose.json", "nturgbd/", "video", False),
95
+ "Character Order": ("character_order.json", "perception/videos/", "video", False),
96
+ "Egocentric Navigation": ("egocentric_navigation.json", "vlnqa/", "video", False),
97
+ "Episodic Reasoning": ("episodic_reasoning.json", "tvqa/frames_fps3_hq/", "frame", True), # has start & end, read frame
98
+ "Counterfactual Inference": ("counterfactual_inference.json", "clevrer/video_validation/", "video", False),
99
+ }
100
+
101
+
102
+ def build_mvbench_eval(args, processor):
103
+ data_list = []
104
+ for task_name, task in tasks.items():
105
+ json_file = os.path.join(args.question_file, task[0])
106
+ vis_folder = os.path.join(args.video_folder, task[1])
107
+ with open(json_file, 'r') as f:
108
+ json_data = json.load(f)
109
+ for data in json_data:
110
+ data_list.append({
111
+ 'task_type': task_name,
112
+ 'prefix': vis_folder,
113
+ 'data_type': task[2],
114
+ 'bound': task[3],
115
+ 'data': data
116
+ })
117
+ data_list = get_chunk(data_list, args.num_chunks, args.chunk_idx)
118
+ dataset = MVBenchDataset(data_list, processor)
119
+ dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
120
+
121
+ return dataloader
122
+
123
+
124
+ def mvbench_dump(vid, instruct, letters, options, output):
125
+
126
+ output = output.replace('answer', '')
127
+ output = output.replace('Answer', '')
128
+ pred_answer = re.findall(f'[\(,\ ]*[{letters[0]}-{letters[-1]}][\),\ ]*', output)
129
+ try:
130
+ find_flag = False
131
+ if len(pred_answer) == 0:
132
+ for idx, opt in enumerate(options):
133
+ # Arabic numerals -> English words
134
+ if opt.lower() in output.lower():
135
+ pred_idx = idx
136
+ find_flag = True
137
+ break
138
+ else:
139
+ pred_answer = pred_answer[0].strip()
140
+ pred_answer = pred_answer.strip('()')
141
+ pred_idx = letters.index(pred_answer)
142
+ find_flag = True
143
+
144
+ assert find_flag, 'The video \"{}\" instruct: \n\"{}\"\n output: \n\"{}\"\n is not in the expected format'.format(vid, instruct, output)
145
+ except:
146
+ traceback.print_exc()
147
+ pred_idx = 2
148
+
149
+ return pred_idx
150
+
151
+
152
+ def run_inference(args):
153
+ disable_torch_init()
154
+
155
+ model, processor, tokenizer = model_init(args.model_path)
156
+
157
+ answer_file = os.path.expanduser(args.answer_file)
158
+ os.makedirs(os.path.dirname(answer_file), exist_ok=True)
159
+ ans_file = open(answer_file, "w")
160
+
161
+ val_loader = build_mvbench_eval(args, processor['video'])
162
+
163
+ # NOTE: only support batch size 1 for now
164
+ for i, line in enumerate(tqdm(val_loader)):
165
+ vid = line['video_path'][0]
166
+ video_tensor = line['video'][0]
167
+ task_type = line['task_type'][0]
168
+ instruct = line['instruct'][0]
169
+ letters = list(zip(*line['letters']))[0]
170
+ options = list(zip(*line['options']))[0]
171
+ answer_idx = line['answer_idx'][0].item()
172
+
173
+ output = mm_infer(
174
+ video_tensor,
175
+ instruct,
176
+ model=model,
177
+ tokenizer=tokenizer,
178
+ modal='video',
179
+ do_sample=False,
180
+ )
181
+
182
+ pred_idx = mvbench_dump(vid, instruct, letters, options, output)
183
+
184
+ ans_file.write(json.dumps({"vid": vid, "task_type": task_type, "pred": pred_idx, "gt": answer_idx}) + '\n')
185
+
186
+ ans_file.close()
187
+
188
+
189
+ if __name__ == "__main__":
190
+ parser = argparse.ArgumentParser()
191
+
192
+ parser.add_argument('--model-path', help='', required=True)
193
+ parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
194
+ parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
195
+ parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
196
+ parser.add_argument("--num-chunks", type=int, default=1)
197
+ parser.add_argument("--chunk-idx", type=int, default=0)
198
+ parser.add_argument("--device", type=str, required=False, default='cuda:0')
199
+ parser.add_argument("--batch-size", type=int, default=1)
200
+ parser.add_argument("--num-workers", type=int, default=8)
201
+ args = parser.parse_args()
202
+
203
+ run_inference(args)
VideoLLaMA2/videollama2/eval/inference_video_mcqa_perception_test_mcqa.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import math
4
+ import json
5
+ import argparse
6
+ import warnings
7
+ import traceback
8
+ from tqdm import tqdm
9
+
10
+ import torch
11
+ from torch.utils.data import Dataset, DataLoader
12
+
13
+ import sys
14
+ sys.path.append('./')
15
+ from videollama2 import model_init, mm_infer
16
+ from videollama2.utils import disable_torch_init
17
+
18
+
19
+ def split_list(lst, n):
20
+ """Split a list into n (roughly) equal-sized chunks"""
21
+ chunk_size = math.ceil(len(lst) / n) # integer division
22
+ return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
23
+
24
+
25
+ def get_chunk(lst, n, k):
26
+ chunks = split_list(lst, n)
27
+ return chunks[k]
28
+
29
+
30
+ class PerceptionTestMCQADataset(Dataset):
31
+
32
+ video_formats = ['.mp4', '.avi', '.mov', '.mkv']
33
+
34
+ def __init__(self, data_list, processor):
35
+ self.data_list = data_list
36
+ self.processor = processor
37
+
38
+ def __len__(self):
39
+ return len(self.data_list)
40
+
41
+ def __getitem__(self, idx):
42
+ line = self.data_list[idx]
43
+ video_name = line['metadata']['video_id']
44
+ mc_questions = line['mc_question']
45
+
46
+ for fmt in self.video_formats: # Added this line
47
+ temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}")
48
+ if os.path.exists(temp_path):
49
+ video_path = temp_path
50
+ break
51
+
52
+ video_tensor = self.processor(video_path)
53
+
54
+ instructs = []
55
+ qids = []
56
+ ops = []
57
+ for q in mc_questions:
58
+ question = q['question']
59
+ qid = q['id']
60
+ options = q['options']
61
+ instruct = f'Question: {question}\nOptions:\n(A) {options[0]}\n(B) {options[1]}\n(C) {options[2]}\nAnswer with the option\'s letter from the given choices directly and only give the best option.'
62
+
63
+ instructs.append(instruct)
64
+ qids.append(qid)
65
+ ops.append(options)
66
+
67
+ return {
68
+ 'video': video_tensor,
69
+ 'video_id': video_name,
70
+ 'instructs': instructs,
71
+ 'question_ids': qids,
72
+ 'options': ops,
73
+ }
74
+
75
+
76
+ def collate_fn(batch):
77
+ vid = [x['video'] for x in batch]
78
+ v_id = [x['video_id'] for x in batch]
79
+ ins = [x['instructs'] for x in batch]
80
+ q_ids = [x['question_ids'] for x in batch]
81
+ ops = [x['options'] for x in batch]
82
+ vid = torch.stack(vid, dim=0)
83
+ return vid, v_id, ins, q_ids, ops
84
+
85
+
86
+ def run_inference(args):
87
+ disable_torch_init()
88
+
89
+ model, processor, tokenizer = model_init(args.model_path)
90
+
91
+ questions = json.load(open(args.question_file, "r"))
92
+ questions = list(questions.values())
93
+ questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
94
+
95
+ assert args.batch_size == 1, "Batch size must be 1 for inference"
96
+ dataset = PerceptionTestMCQADataset(questions, processor['video'])
97
+ dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)
98
+
99
+ answer_file = os.path.expanduser(args.answer_file)
100
+ os.makedirs(os.path.dirname(answer_file), exist_ok=True)
101
+ ans_file = open(answer_file, "w")
102
+
103
+ # Iterate over each sample in the ground truth file
104
+ for i, (video_tensor, video_id, instructs, question_ids, options) in enumerate(tqdm(dataloader)):
105
+
106
+ # reduce batch dimension
107
+ video_tensor = video_tensor[0]
108
+ video_id = video_id[0]
109
+ instructs = instructs[0]
110
+ question_ids = question_ids[0]
111
+ options = options[0]
112
+
113
+ qas = []
114
+ for idx, instruct in enumerate(instructs):
115
+ letters = ['(A)', '(B)', '(C)']
116
+ question_id = question_ids[idx]
117
+ _options = options[idx]
118
+
119
+ output = mm_infer(
120
+ video_tensor,
121
+ instruct,
122
+ model=model,
123
+ tokenizer=tokenizer,
124
+ modal='video',
125
+ do_sample=False,
126
+ )
127
+
128
+ output = output.replace('answer', '')
129
+ output = output.replace('Answer', '')
130
+ pred_answer = re.findall('\(*[A-C]\)*', output)
131
+ try:
132
+ assert len(pred_answer) >= 1, 'The video \"{}\" instruct: \n\"{}\"\n output: \n\"{}\"\n is not in the expected format'.format(video_id, instruct, output)
133
+ pred_answer = pred_answer[0].strip()
134
+ # if not pred_answer.startswith('('):
135
+ pred_answer = pred_answer.strip('()')
136
+ pred_answer = f'({pred_answer})'
137
+ pred_idx = letters.index(pred_answer)
138
+ except:
139
+ traceback.print_exc()
140
+ tmp_options = [x.lower() for x in _options]
141
+ if output.lower() in tmp_options:
142
+ tmp_options = [x.lower() for x in _options]
143
+ pred_idx = tmp_options.index(output.lower())
144
+ else:
145
+ pred_idx = 2
146
+
147
+ qas.append({'id': question_id, 'answer_id': pred_idx, 'answer': _options[pred_idx]})
148
+
149
+ ans_file.write('\"{}\": {},\n'.format(video_id, json.dumps(qas)))
150
+
151
+ ans_file.close()
152
+
153
+
154
+ if __name__ == "__main__":
155
+ parser = argparse.ArgumentParser()
156
+
157
+ parser.add_argument('--model-path', help='', required=True)
158
+ parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
159
+ parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
160
+ parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
161
+ parser.add_argument("--num-chunks", type=int, default=1)
162
+ parser.add_argument("--chunk-idx", type=int, default=0)
163
+ parser.add_argument("--device", type=str, required=False, default='cuda:0')
164
+ parser.add_argument("--model_max_length", type=int, required=False, default=2048)
165
+ parser.add_argument("--batch-size", type=int, required=False, default=1)
166
+ parser.add_argument("--num-workers", type=int, required=False, default=8)
167
+ args = parser.parse_args()
168
+
169
+ run_inference(args)
VideoLLaMA2/videollama2/eval/inference_video_mcqa_videomme.py ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import math
4
+ import json
5
+ import copy
6
+ import argparse
7
+ import warnings
8
+ import traceback
9
+
10
+ import cv2
11
+ import torch
12
+ import pysubs2
13
+ import numpy as np
14
+ import pyarrow.parquet as pq
15
+ from tqdm import tqdm
16
+ from torch.utils.data import Dataset, DataLoader
17
+
18
+ import sys
19
+ sys.path.append('./')
20
+ from videollama2 import model_init, mm_infer
21
+ from videollama2.utils import disable_torch_init
22
+
23
+ # NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
24
+ warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
25
+
26
+
27
+ def split_list(lst, n):
28
+ """Split a list into n (roughly) equal-sized chunks"""
29
+ chunk_size = math.ceil(len(lst) / n) # integer division
30
+ return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
31
+
32
+
33
+ def get_chunk(lst, n, k):
34
+ chunks = split_list(lst, n)
35
+ return chunks[k]
36
+
37
+
38
+ def get_seq_frames(total_num_frames, desired_num_frames):
39
+ """
40
+ Calculate the indices of frames to extract from a video.
41
+
42
+ Parameters:
43
+ total_num_frames (int): Total number of frames in the video.
44
+ desired_num_frames (int): Desired number of frames to extract.
45
+
46
+ Returns:
47
+ list: List of indices of frames to extract.
48
+ """
49
+
50
+ # Calculate the size of each segment from which a frame will be extracted
51
+ seg_size = float(total_num_frames - 1) / desired_num_frames
52
+
53
+ seq = []
54
+ for i in range(desired_num_frames):
55
+ # Calculate the start and end indices of each segment
56
+ start = int(np.round(seg_size * i))
57
+ end = int(np.round(seg_size * (i + 1)))
58
+
59
+ # Append the middle index of the segment to the list
60
+ seq.append((start + end) // 2)
61
+
62
+ return seq
63
+
64
+
65
+ class VideoMMEDataset(Dataset):
66
+
67
+ video_formats = ['.mp4', '.avi', '.mov', '.mkv']
68
+
69
+ def __init__(self, video_folder, subtitle_folder, data_list, processor):
70
+ self.video_folder = video_folder
71
+ self.subtitle_folder = subtitle_folder
72
+ self.data_list = data_list
73
+ self.processor = processor
74
+
75
+ def __len__(self):
76
+ return len(self.data_list)
77
+
78
+ def __getitem__(self, idx):
79
+ line = self.data_list[idx]
80
+
81
+ video_ytid = line['url'].split('watch?v=')[-1]
82
+
83
+ for fmt in self.video_formats: # Added this line
84
+ temp_path = os.path.join(self.video_folder, f'{video_ytid}{fmt}')
85
+ if os.path.exists(temp_path):
86
+ video_path = temp_path
87
+ break
88
+
89
+ subtitle_path = os.path.join(self.subtitle_folder, f'{video_ytid}.srt')
90
+
91
+ try:
92
+ video_tensor = self.processor(video_path)
93
+ num_frames = video_tensor.shape[0]
94
+ except:
95
+ traceback.print_exc()
96
+ print(f'It occurs error when reading {video_ytid}')
97
+ video_tensor = None
98
+ num_frames = 0
99
+
100
+ if video_tensor is not None and os.path.exists(subtitle_path):
101
+ cv2_vr = cv2.VideoCapture(video_path)
102
+ duration = int(cv2_vr.get(cv2.CAP_PROP_FRAME_COUNT))
103
+ fps = cv2_vr.get(cv2.CAP_PROP_FPS)
104
+ selected_frame_ids = get_seq_frames(duration, num_frames)
105
+
106
+ subs = pysubs2.load(subtitle_path, encoding="utf-8")
107
+ subtitles = []
108
+ for seleced_frame_id in selected_frame_ids:
109
+ sub_text = ""
110
+ cur_time = pysubs2.make_time(fps=fps, frames=seleced_frame_id)
111
+ for sub in subs:
112
+ if sub.start < cur_time and sub.end > cur_time:
113
+ sub_text = sub.text.replace("\\N", " ")
114
+ break
115
+ if sub_text.strip():
116
+ subtitles.append(sub_text)
117
+ subtitles = "\n".join(subtitles)
118
+ else:
119
+ subtitles = ""
120
+
121
+ return {
122
+ 'video': video_tensor,
123
+ 'subtitle': subtitles,
124
+ 'record': line,
125
+ }
126
+
127
+
128
+ def collate_fn(batch):
129
+ vid = [x['video'] for x in batch]
130
+ sub = [x['subtitle'] for x in batch]
131
+ rcs = [x['record'] for x in batch]
132
+ return vid, sub, rcs
133
+
134
+
135
+ def load_parquet(parquet_file):
136
+ table = pq.read_table(parquet_file)
137
+
138
+ # Convert PyArrow Table to pandas DataFrame
139
+ df = table.to_pandas()
140
+
141
+ jsons = []
142
+ for record in df.itertuples():
143
+
144
+ if len(jsons) < int(record.video_id):
145
+ jsons.append({
146
+ "video_id": record.video_id,
147
+ "youtube_id": record.videoID,
148
+ "url": record.url,
149
+ "duration": record.duration,
150
+ "domain": record.domain,
151
+ "sub_category": record.sub_category,
152
+ "questions": [
153
+ {
154
+ "question_id": record.question_id,
155
+ "task_type": record.task_type,
156
+ "question": record.question,
157
+ "choices": list(record.options),
158
+ "answer": record.answer,
159
+ }
160
+ ]
161
+ })
162
+ else:
163
+ jsons[-1]['questions'].append({
164
+ "question_id": record.question_id,
165
+ "task_type": record.task_type,
166
+ "question": record.question,
167
+ "choices": list(record.options),
168
+ "answer": record.answer,
169
+ })
170
+
171
+ return jsons
172
+
173
+
174
+ def build_videomme_eval(args, processor):
175
+ # convert parquet to json
176
+ questions = load_parquet(args.question_file)
177
+ # questions = json.load(open(args.question_file, "r"))
178
+ questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
179
+ dataset = VideoMMEDataset(args.video_folder, args.subtitle_folder, questions, processor)
180
+ dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, collate_fn=collate_fn)
181
+
182
+ return dataloader
183
+
184
+
185
+ def videomme_dump(record, instruct, options, output):
186
+ letters = ['A', 'B', 'C', 'D']
187
+
188
+ digit2word = {
189
+ '1': 'one',
190
+ '2': 'two',
191
+ '3': 'three',
192
+ '4': 'four',
193
+ '5': 'five',
194
+ '6': 'six',
195
+ '7': 'seven',
196
+ '8': 'eight',
197
+ '9': 'nine',
198
+ '0': 'zero',
199
+ }
200
+
201
+ output = output.replace('answer', '')
202
+ output = output.replace('Answer', '')
203
+ pred_answer = re.findall('[\(\ \[]*([A-D])[\)\.\ \]]*', output)
204
+ try:
205
+ find_flag = False
206
+ if len(pred_answer) == 0:
207
+ for idx, opt in enumerate(options):
208
+ # Arabic numerals -> English words
209
+ opt2 = opt
210
+ if opt in digit2word:
211
+ opt2 = digit2word[opt]
212
+ if opt.lower() in output.lower() or opt2.lower() in output.lower():
213
+ pred_idx = idx
214
+ find_flag = True
215
+ break
216
+ else:
217
+ pred_answer = pred_answer[0].strip()
218
+ pred_answer = pred_answer.strip('()')
219
+ pred_idx = letters.index(pred_answer)
220
+ find_flag = True
221
+
222
+ assert find_flag, 'The video \"{}\" instruct: \n\"{}\"\n output: \n\"{}\"\n is not in the expected format'.format(record['youtube_id'], instruct, output)
223
+ except:
224
+ traceback.print_exc()
225
+ pred_idx = 2
226
+
227
+ return letters[pred_idx]
228
+
229
+
230
+ def run_inference(args):
231
+ disable_torch_init()
232
+
233
+ # Initialize the model
234
+ model, processor, tokenizer = model_init(args.model_path)
235
+
236
+ answer_file = os.path.expanduser(args.answer_file)
237
+ answer_sub_file = answer_file.replace('.json', '_sub.json')
238
+ os.makedirs(os.path.dirname(answer_file), exist_ok=True)
239
+ ans_file = open(answer_file, "w")
240
+ ans_sub_file = open(answer_sub_file, "w")
241
+
242
+ val_loader = build_videomme_eval(args, processor['video'])
243
+
244
+ # Iterate over each sample in the ground truth file
245
+ for i, (videos, subtitles, records) in enumerate(tqdm(val_loader)):
246
+ video_tensor = videos[0]
247
+ subtitle = subtitles[0]
248
+ record = records[0]
249
+
250
+ new_record = copy.deepcopy(record)
251
+ new_record_sub = copy.deepcopy(record)
252
+
253
+ if video_tensor is None:
254
+ new_record['missing'] = True
255
+ ans_file.write(json.dumps(new_record) + ",\n")
256
+ new_record_sub['missing'] = True
257
+ ans_sub_file.write(json.dumps(new_record_sub) + ",\n")
258
+ continue
259
+ else:
260
+ new_record['missing'] = False
261
+ new_record_sub['missing'] = False
262
+
263
+ questions = record['questions']
264
+ for idx, question in enumerate(questions):
265
+ q = question['question']
266
+ choices = question['choices']
267
+ options = [re.findall('[A-D]\. (.*).', c)[0] for c in choices]
268
+
269
+ instruct = "Select the best answer to the following multiple-choice question based on the video. Respond with only the letter (A, B, C, or D) of the correct option.\n"
270
+ instruct += f"{q}\n"
271
+ for cho_idx, cho in enumerate(choices):
272
+ instruct += f"{cho}\n"
273
+ # instruct += "The best option is: "
274
+ instruct += "Answer with the option\'s letter from the given choices directly and only give the best option. The best answer is: "
275
+ output = mm_infer(video_tensor, instruct, model=model, tokenizer=tokenizer, modal='video', do_sample=False)
276
+ new_record['questions'][idx]['response'] = videomme_dump(record, instruct, options, output)
277
+
278
+ instruct = f"This video's subtitles are listed below:\n{subtitle}\n" + instruct
279
+ output = mm_infer(video_tensor, instruct, model=model, tokenizer=tokenizer, modal='video', do_sample=False)
280
+ new_record_sub['questions'][idx]['response'] = videomme_dump(record, instruct, options, output)
281
+
282
+ ans_file.write(json.dumps(new_record) + ",\n")
283
+ ans_sub_file.write(json.dumps(new_record_sub) + ",\n")
284
+
285
+ ans_file.close()
286
+ ans_sub_file.close()
287
+
288
+
289
+ if __name__ == "__main__":
290
+ parser = argparse.ArgumentParser()
291
+
292
+ parser.add_argument('--model-path', help='', required=True)
293
+ parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
294
+ parser.add_argument('--subtitle-folder', help='Directory containing subtitle files.', required=True)
295
+ parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
296
+ parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
297
+ parser.add_argument("--num-chunks", type=int, default=1)
298
+ parser.add_argument("--chunk-idx", type=int, default=0)
299
+ parser.add_argument("--device", type=str, required=False, default='cuda:0')
300
+ parser.add_argument("--batch-size", type=int, default=1)
301
+ parser.add_argument("--num-workers", type=int, default=8)
302
+ args = parser.parse_args()
303
+
304
+ run_inference(args)
VideoLLaMA2/videollama2/eval/inference_video_oqa_activitynet.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import math
4
+ import argparse
5
+ import warnings
6
+ import traceback
7
+ from tqdm import tqdm
8
+
9
+ from torch.utils.data import Dataset, DataLoader
10
+
11
+ import sys
12
+ sys.path.append('./')
13
+ from videollama2 import model_init, mm_infer
14
+ from videollama2.utils import disable_torch_init
15
+
16
+ # NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
17
+ warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
18
+
19
+
20
+ def split_list(lst, n):
21
+ """Split a list into n (roughly) equal-sized chunks"""
22
+ chunk_size = math.ceil(len(lst) / n) # integer division
23
+ return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
24
+
25
+
26
+ def get_chunk(lst, n, k):
27
+ chunks = split_list(lst, n)
28
+ return chunks[k]
29
+
30
+
31
+ class ActivitynetDataset(Dataset):
32
+
33
+ video_formats = ['.mp4', '.webm', '.avi', '.mov', '.mkv']
34
+
35
+ def __init__(self, questions, answers, processor):
36
+ self.questions = questions
37
+ self.answers = answers
38
+ self.processor = processor
39
+
40
+ def __len__(self):
41
+ return len(self.questions)
42
+
43
+ def __getitem__(self, idx):
44
+ sample = self.questions[idx]
45
+ answer = self.answers[idx]
46
+
47
+ video_name = sample['video_name']
48
+ question = sample['question']
49
+ question_id = sample['question_id']
50
+ answer = answer['answer']
51
+
52
+ video_path = None
53
+ for fmt in self.video_formats: # Added this line
54
+ temp_path = os.path.join(args.video_folder, f"v_{video_name}{fmt}")
55
+ if os.path.exists(temp_path):
56
+ video_path = temp_path
57
+ break
58
+ # BUG: compatibility for MSVD, MSRVTT, TGIF
59
+ temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}")
60
+ if os.path.exists(temp_path):
61
+ video_path = temp_path
62
+ break
63
+
64
+ if video_path is None:
65
+ raise FileNotFoundError(f"Video file not found for {os.path.join(args.video_folder, video_name)}")
66
+
67
+ video_tensor = self.processor(video_path)
68
+
69
+ return {
70
+ 'video': video_tensor,
71
+ 'video_name': video_name,
72
+ 'question': question,
73
+ 'question_id': question_id,
74
+ 'answer': answer,
75
+ }
76
+
77
+
78
+ def collate_fn(batch):
79
+ vid = [x['video'] for x in batch]
80
+ v_id = [x['video_name'] for x in batch]
81
+ qus = [x['question'] for x in batch]
82
+ qid = [x['question_id'] for x in batch]
83
+ ans = [x['answer'] for x in batch]
84
+ return vid, v_id, qus, qid, ans
85
+
86
+
87
+ def run_inference(args):
88
+ disable_torch_init()
89
+
90
+ # Initialize the model
91
+ model, processor, tokenizer = model_init(args.model_path)
92
+
93
+ gt_questions = json.load(open(args.question_file, "r"))
94
+ gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
95
+ gt_answers = json.load(open(args.answer_file, "r"))
96
+ gt_answers = get_chunk(gt_answers, args.num_chunks, args.chunk_idx)
97
+
98
+ assert args.batch_size == 1, "Batch size must be 1 for inference"
99
+ dataset = ActivitynetDataset(gt_questions, gt_answers, processor['video'])
100
+ dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)
101
+
102
+ answer_file = os.path.join(args.output_file)
103
+ os.makedirs(os.path.dirname(args.output_file), exist_ok=True)
104
+ ans_file = open(answer_file, "w")
105
+
106
+ # Iterate over each sample in the ground truth file
107
+ for i, (video_tensors, video_names, questions, question_ids, answers) in enumerate(tqdm(dataloader)):
108
+ video_tensor = video_tensors[0]
109
+ video_name = video_names[0]
110
+ question = questions[0]
111
+ question_id = question_ids[0]
112
+ answer = answers[0]
113
+
114
+ # question = question + '\n' + 'Answer the question using a single word or a short phrase with multiple words.'
115
+
116
+ try:
117
+ output = mm_infer(
118
+ video_tensor,
119
+ question,
120
+ model=model,
121
+ tokenizer=tokenizer,
122
+ modal='video',
123
+ do_sample=False,
124
+ )
125
+ except:
126
+ traceback.print_exc()
127
+ output = "error"
128
+
129
+ sample_set = {'id': question_id, 'question': question, 'answer': answer, 'pred': output}
130
+ ans_file.write(json.dumps(sample_set) + "\n")
131
+
132
+ ans_file.close()
133
+
134
+
135
+ if __name__ == "__main__":
136
+ parser = argparse.ArgumentParser()
137
+
138
+ parser.add_argument('--model-path', help='', required=True)
139
+ parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
140
+ parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
141
+ parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
142
+ parser.add_argument('--output-file', help='Directory to save the model results JSON.', required=True)
143
+ parser.add_argument("--num-chunks", type=int, default=1)
144
+ parser.add_argument("--chunk-idx", type=int, default=0)
145
+ parser.add_argument("--device", type=str, required=False, default='cuda:0')
146
+ parser.add_argument("--batch-size", type=int, required=False, default=1)
147
+ parser.add_argument("--num-workers", type=int, required=False, default=8)
148
+ args = parser.parse_args()
149
+
150
+ run_inference(args)
VideoLLaMA2/videollama2/eval/inference_video_oqa_vcgpt_consistency.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import math
4
+ import json
5
+ import argparse
6
+ import warnings
7
+ from tqdm import tqdm
8
+
9
+ import torch
10
+ from torch.utils.data import Dataset, DataLoader
11
+
12
+ import sys
13
+ sys.path.append('./')
14
+ from videollama2 import model_init, mm_infer
15
+ from videollama2.utils import disable_torch_init
16
+
17
+ # NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
18
+ warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
19
+
20
+
21
+ def split_list(lst, n):
22
+ """Split a list into n (roughly) equal-sized chunks"""
23
+ chunk_size = math.ceil(len(lst) / n) # integer division
24
+ return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
25
+
26
+
27
+ def get_chunk(lst, n, k):
28
+ chunks = split_list(lst, n)
29
+ return chunks[k]
30
+
31
+
32
+ class VCGPTDataset(Dataset):
33
+
34
+ video_formats = ['.mp4', '.webm', '.avi', '.mov', '.mkv']
35
+
36
+ def __init__(self, data_list, processor):
37
+ self.data_list = data_list
38
+ self.processor = processor
39
+
40
+ def __len__(self):
41
+ return len(self.data_list)
42
+
43
+ def __getitem__(self, idx):
44
+ line = self.data_list[idx]
45
+ question1 = line['Q1']
46
+ question2 = line['Q2']
47
+ answer = line['A']
48
+ video_name = line['video_name']
49
+
50
+ for fmt in self.video_formats: # Added this line
51
+ temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}")
52
+ if os.path.exists(temp_path):
53
+ video_path = temp_path
54
+ break
55
+
56
+ video_tensor = self.processor(video_path)
57
+
58
+ return {
59
+ 'video': video_tensor,
60
+ 'video_name': video_name,
61
+ 'question1': question1,
62
+ 'question2': question2,
63
+ 'answer': answer,
64
+ }
65
+
66
+
67
+ def collate_fn(batch):
68
+ vid = [x['video'] for x in batch]
69
+ v_id = [x['video_name'] for x in batch]
70
+ qus1 = [x['question1'] for x in batch]
71
+ qus2 = [x['question2'] for x in batch]
72
+ ans = [x['answer'] for x in batch]
73
+ vid = torch.stack(vid, dim=0)
74
+ return vid, v_id, qus1, qus2, ans
75
+
76
+
77
+ def run_inference(args):
78
+ disable_torch_init()
79
+
80
+ # Initialize the model
81
+ model, processor, tokenizer = model_init(args.model_path)
82
+
83
+ questions = json.load(open(args.question_file, "r"))
84
+ questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
85
+
86
+ assert args.batch_size == 1, "Batch size must be 1 for inference"
87
+ dataset = VCGPTDataset(questions, processor['video'])
88
+ dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)
89
+
90
+ answer_file = os.path.expanduser(args.answer_file)
91
+ os.makedirs(os.path.dirname(answer_file), exist_ok=True)
92
+ ans_file = open(answer_file, "w")
93
+
94
+ output_list = [] # List to store the output results
95
+
96
+ # Iterate over each sample in the ground truth file
97
+ for i, (video_tensors, video_names, questions1, questions2, answers) in enumerate(tqdm(dataloader)):
98
+
99
+ # reduce batch dimension
100
+ video_tensor = video_tensors[0]
101
+ video_name = video_names[0]
102
+ question1 = questions1[0]
103
+ question2 = questions2[0]
104
+ answer = answers[0]
105
+
106
+ output1 = mm_infer(
107
+ video_tensor,
108
+ question1,
109
+ model=model,
110
+ tokenizer=tokenizer,
111
+ modal='video',
112
+ do_sample=False,
113
+ )
114
+
115
+ output2 = mm_infer(
116
+ video_tensor,
117
+ question2,
118
+ model=model,
119
+ tokenizer=tokenizer,
120
+ do_sample=False,
121
+ modal='video',
122
+ )
123
+
124
+ qa = {'video_name': video_name, 'Q1': question1, 'Q2': question2, 'A': answer, 'P1': output1, 'P2': output2}
125
+
126
+ ans_file.write(json.dumps(qa) + "\n")
127
+
128
+ ans_file.close()
129
+
130
+
131
+ if __name__ == "__main__":
132
+ parser = argparse.ArgumentParser()
133
+
134
+ # Define the command-line arguments
135
+ parser.add_argument('--model-path', help='', required=True)
136
+ parser.add_argument('--model_base', help='', default=None, type=str, required=False)
137
+ parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
138
+ parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
139
+ parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True)
140
+ parser.add_argument("--conv-mode", type=str, default="llava_v1")
141
+ parser.add_argument("--num-chunks", type=int, default=1)
142
+ parser.add_argument("--chunk-idx", type=int, default=0)
143
+ parser.add_argument("--device", type=str, required=False, default='cuda:0')
144
+ parser.add_argument("--model_max_length", type=int, required=False, default=2048)
145
+ parser.add_argument("--batch-size", type=int, required=False, default=1)
146
+ parser.add_argument("--num-workers", type=int, required=False, default=8)
147
+
148
+ args = parser.parse_args()
149
+
150
+ run_inference(args)