Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	Merge branch 'longgen' into our_hf2
Browse files- README.md +7 -6
- app.py +215 -87
- audiocraft/models/loaders.py +0 -2
- audiocraft/models/musicgen.py +82 -11
- audiocraft/modules/transformer.py +67 -27
- tests/models/test_musicgen.py +9 -1
- tests/modules/test_rope.py +9 -1
- tests/modules/test_transformer.py +40 -34
    	
        README.md
    CHANGED
    
    | @@ -5,7 +5,7 @@ tags: | |
| 5 | 
             
              - "music generation"
         | 
| 6 | 
             
              - "language models"
         | 
| 7 | 
             
              - "LLMs"
         | 
| 8 | 
            -
            app_file: " | 
| 9 | 
             
            emoji: 🎵
         | 
| 10 | 
             
            colorFrom: white
         | 
| 11 | 
             
            colorTo: blue
         | 
| @@ -54,11 +54,12 @@ pip install -e .  # or if you cloned the repo locally | |
| 54 |  | 
| 55 | 
             
            ## Usage
         | 
| 56 | 
             
            We offer a number of way to interact with MusicGen:
         | 
| 57 | 
            -
            1.  | 
| 58 | 
            -
            2. You can  | 
| 59 | 
            -
            3.  | 
| 60 | 
            -
            4.  | 
| 61 | 
            -
             | 
|  | |
| 62 |  | 
| 63 | 
             
            ## API
         | 
| 64 |  | 
|  | |
| 5 | 
             
              - "music generation"
         | 
| 6 | 
             
              - "language models"
         | 
| 7 | 
             
              - "LLMs"
         | 
| 8 | 
            +
            app_file: "app.py"
         | 
| 9 | 
             
            emoji: 🎵
         | 
| 10 | 
             
            colorFrom: white
         | 
| 11 | 
             
            colorTo: blue
         | 
|  | |
| 54 |  | 
| 55 | 
             
            ## Usage
         | 
| 56 | 
             
            We offer a number of way to interact with MusicGen:
         | 
| 57 | 
            +
            1. A demo is also available on the [`facebook/MusicGen`  HuggingFace Space](https://huggingface.co/spaces/facebook/MusicGen) (huge thanks to all the HF team for their support).
         | 
| 58 | 
            +
            2. You can run the extended demo on a Colab: [colab notebook](https://colab.research.google.com/drive/1fxGqfg96RBUvGxZ1XXN07s3DthrKUl4-?usp=sharing).
         | 
| 59 | 
            +
            3. You can use the gradio demo locally by running `python app.py`.
         | 
| 60 | 
            +
            4. You can play with MusicGen by running the jupyter notebook at [`demo.ipynb`](./demo.ipynb) locally (if you have a GPU).
         | 
| 61 | 
            +
            5. Finally, checkout [@camenduru Colab page](https://github.com/camenduru/MusicGen-colab) which is regularly
         | 
| 62 | 
            +
              updated with contributions from @camenduru and the community.
         | 
| 63 |  | 
| 64 | 
             
            ## API
         | 
| 65 |  | 
    	
        app.py
    CHANGED
    
    | @@ -1,70 +1,139 @@ | |
| 1 | 
            -
             | 
| 2 | 
            -
             | 
| 3 | 
            -
            All rights reserved.
         | 
| 4 |  | 
| 5 | 
            -
            This source code is licensed under the license found in the
         | 
| 6 | 
            -
            LICENSE file in the root directory of this source tree.
         | 
| 7 | 
            -
             | 
|  | |
|  | |
| 8 |  | 
| 9 | 
            -
            from tempfile import NamedTemporaryFile
         | 
| 10 | 
             
            import argparse
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 11 | 
             
            import torch
         | 
| 12 | 
             
            import gradio as gr
         | 
| 13 | 
            -
             | 
| 14 | 
            -
            from audiocraft. | 
| 15 | 
             
            from audiocraft.data.audio import audio_write
         | 
|  | |
| 16 |  | 
| 17 | 
            -
            MODEL = None
         | 
| 18 | 
            -
            IS_SHARED_SPACE = "musicgen/MusicGen" in os.environ.get('SPACE_ID', '')
         | 
| 19 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 20 |  | 
| 21 | 
            -
            def load_model(version):
         | 
| 22 | 
            -
                print("Loading model", version)
         | 
| 23 | 
            -
                return MusicGen.get_pretrained(version)
         | 
| 24 |  | 
|  | |
|  | |
|  | |
| 25 |  | 
| 26 | 
            -
            def  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 27 | 
             
                global MODEL
         | 
| 28 | 
            -
                 | 
| 29 | 
            -
                if MODEL is None or MODEL.name !=  | 
| 30 | 
            -
                    MODEL =  | 
| 31 | 
            -
             | 
| 32 | 
            -
             | 
| 33 | 
            -
             | 
| 34 | 
            -
                MODEL.set_generation_params(
         | 
| 35 | 
            -
             | 
| 36 | 
            -
             | 
| 37 | 
            -
             | 
| 38 | 
            -
             | 
| 39 | 
            -
             | 
| 40 | 
            -
             | 
| 41 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 42 |  | 
| 43 | 
            -
                if  | 
| 44 | 
            -
                     | 
| 45 | 
            -
             | 
| 46 | 
            -
             | 
| 47 | 
            -
                         | 
| 48 | 
            -
             | 
| 49 | 
            -
                    output = MODEL.generate_with_chroma(
         | 
| 50 | 
            -
                        descriptions=[text],
         | 
| 51 | 
            -
                        melody_wavs=melody,
         | 
| 52 | 
            -
                        melody_sample_rate=sr,
         | 
| 53 | 
            -
                        progress=False
         | 
| 54 | 
             
                    )
         | 
| 55 | 
             
                else:
         | 
| 56 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 57 |  | 
| 58 | 
            -
                 | 
| 59 | 
            -
             | 
| 60 | 
            -
                     | 
| 61 | 
            -
                         | 
| 62 | 
            -
             | 
| 63 | 
            -
                    waveform_video = gr.make_waveform(file.name)
         | 
| 64 | 
            -
                return waveform_video
         | 
| 65 |  | 
|  | |
|  | |
|  | |
|  | |
| 66 |  | 
| 67 | 
            -
             | 
|  | |
| 68 | 
             
                with gr.Blocks() as interface:
         | 
| 69 | 
             
                    gr.Markdown(
         | 
| 70 | 
             
                        """
         | 
| @@ -73,14 +142,6 @@ def ui(**kwargs): | |
| 73 | 
             
                        presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
         | 
| 74 | 
             
                        """
         | 
| 75 | 
             
                    )
         | 
| 76 | 
            -
                    if IS_SHARED_SPACE:
         | 
| 77 | 
            -
                        gr.Markdown("""
         | 
| 78 | 
            -
                            ⚠ This Space doesn't work in this shared UI ⚠
         | 
| 79 | 
            -
             | 
| 80 | 
            -
                            <a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
         | 
| 81 | 
            -
                            <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
         | 
| 82 | 
            -
                            to use it privately, or use the <a href="https://huggingface.co/spaces/facebook/MusicGen">public demo</a>
         | 
| 83 | 
            -
                            """)
         | 
| 84 | 
             
                    with gr.Row():
         | 
| 85 | 
             
                        with gr.Column():
         | 
| 86 | 
             
                            with gr.Row():
         | 
| @@ -88,10 +149,12 @@ def ui(**kwargs): | |
| 88 | 
             
                                melody = gr.Audio(source="upload", type="numpy", label="Melody Condition (optional)", interactive=True)
         | 
| 89 | 
             
                            with gr.Row():
         | 
| 90 | 
             
                                submit = gr.Button("Submit")
         | 
|  | |
|  | |
| 91 | 
             
                            with gr.Row():
         | 
| 92 | 
             
                                model = gr.Radio(["melody", "medium", "small", "large"], label="Model", value="melody", interactive=True)
         | 
| 93 | 
             
                            with gr.Row():
         | 
| 94 | 
            -
                                duration = gr.Slider(minimum=1, maximum= | 
| 95 | 
             
                            with gr.Row():
         | 
| 96 | 
             
                                topk = gr.Number(label="Top-k", value=250, interactive=True)
         | 
| 97 | 
             
                                topp = gr.Number(label="Top-p", value=0, interactive=True)
         | 
| @@ -99,9 +162,9 @@ def ui(**kwargs): | |
| 99 | 
             
                                cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
         | 
| 100 | 
             
                        with gr.Column():
         | 
| 101 | 
             
                            output = gr.Video(label="Generated Music")
         | 
| 102 | 
            -
                    submit.click( | 
| 103 | 
             
                    gr.Examples(
         | 
| 104 | 
            -
                        fn= | 
| 105 | 
             
                        examples=[
         | 
| 106 | 
             
                            [
         | 
| 107 | 
             
                                "An 80s driving pop song with heavy drums and synth pads in the background",
         | 
| @@ -137,7 +200,13 @@ def ui(**kwargs): | |
| 137 | 
             
                        ### More details
         | 
| 138 |  | 
| 139 | 
             
                        The model will generate a short music extract based on the description you provided.
         | 
| 140 | 
            -
                         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 141 |  | 
| 142 | 
             
                        We present 4 model variations:
         | 
| 143 | 
             
                        1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only.
         | 
| @@ -154,27 +223,75 @@ def ui(**kwargs): | |
| 154 | 
             
                        """
         | 
| 155 | 
             
                    )
         | 
| 156 |  | 
| 157 | 
            -
                     | 
| 158 | 
            -
                    launch_kwargs = {}
         | 
| 159 | 
            -
                    username = kwargs.get('username')
         | 
| 160 | 
            -
                    password = kwargs.get('password')
         | 
| 161 | 
            -
                    server_port = kwargs.get('server_port', 0)
         | 
| 162 | 
            -
                    inbrowser = kwargs.get('inbrowser', False)
         | 
| 163 | 
            -
                    share = kwargs.get('share', False)
         | 
| 164 | 
            -
                    server_name = kwargs.get('listen')
         | 
| 165 |  | 
| 166 | 
            -
                    launch_kwargs['server_name'] = server_name
         | 
| 167 |  | 
| 168 | 
            -
             | 
| 169 | 
            -
             | 
| 170 | 
            -
                     | 
| 171 | 
            -
                         | 
| 172 | 
            -
             | 
| 173 | 
            -
                        launch_kwargs['inbrowser'] = inbrowser
         | 
| 174 | 
            -
                    if share:
         | 
| 175 | 
            -
                        launch_kwargs['share'] = share
         | 
| 176 |  | 
| 177 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 178 |  | 
| 179 |  | 
| 180 | 
             
            if __name__ == "__main__":
         | 
| @@ -182,7 +299,11 @@ if __name__ == "__main__": | |
| 182 | 
             
                parser.add_argument(
         | 
| 183 | 
             
                    '--listen',
         | 
| 184 | 
             
                    type=str,
         | 
|  | |
| 185 | 
             
                    default='0.0.0.0',
         | 
|  | |
|  | |
|  | |
| 186 | 
             
                    help='IP to listen on for connections to Gradio',
         | 
| 187 | 
             
                )
         | 
| 188 | 
             
                parser.add_argument(
         | 
| @@ -206,11 +327,18 @@ if __name__ == "__main__": | |
| 206 |  | 
| 207 | 
             
                args = parser.parse_args()
         | 
| 208 |  | 
| 209 | 
            -
                 | 
| 210 | 
            -
             | 
| 211 | 
            -
                     | 
| 212 | 
            -
             | 
| 213 | 
            -
                    server_port=args.server_port | 
| 214 | 
            -
             | 
| 215 | 
            -
                     | 
| 216 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            +
            # All rights reserved.
         | 
|  | |
| 3 |  | 
| 4 | 
            +
            # This source code is licensed under the license found in the
         | 
| 5 | 
            +
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Updated to account for UI changes from https://github.com/rkfg/audiocraft/blob/long/app.py
         | 
| 8 | 
            +
            # also released under the MIT license.
         | 
| 9 |  | 
|  | |
| 10 | 
             
            import argparse
         | 
| 11 | 
            +
            from concurrent.futures import ProcessPoolExecutor
         | 
| 12 | 
            +
            import os
         | 
| 13 | 
            +
            import subprocess as sp
         | 
| 14 | 
            +
            from tempfile import NamedTemporaryFile
         | 
| 15 | 
            +
            import time
         | 
| 16 | 
            +
            import warnings
         | 
| 17 | 
            +
             | 
| 18 | 
             
            import torch
         | 
| 19 | 
             
            import gradio as gr
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            from audiocraft.data.audio_utils import convert_audio
         | 
| 22 | 
             
            from audiocraft.data.audio import audio_write
         | 
| 23 | 
            +
            from audiocraft.models import MusicGen
         | 
| 24 |  | 
|  | |
|  | |
| 25 |  | 
| 26 | 
            +
            MODEL = None  # Last used model
         | 
| 27 | 
            +
            IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '')
         | 
| 28 | 
            +
            MAX_BATCH_SIZE = 12
         | 
| 29 | 
            +
            BATCHED_DURATION = 15
         | 
| 30 | 
            +
            INTERRUPTING = False
         | 
| 31 | 
            +
            # We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
         | 
| 32 | 
            +
            _old_call = sp.call
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            def _call_nostderr(*args, **kwargs):
         | 
| 36 | 
            +
                # Avoid ffmpeg vomitting on the logs.
         | 
| 37 | 
            +
                kwargs['stderr'] = sp.DEVNULL
         | 
| 38 | 
            +
                kwargs['stdout'] = sp.DEVNULL
         | 
| 39 | 
            +
                _old_call(*args, **kwargs)
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            sp.call = _call_nostderr
         | 
| 43 | 
            +
            # Preallocating the pool of processes.
         | 
| 44 | 
            +
            pool = ProcessPoolExecutor(4)
         | 
| 45 | 
            +
            pool.__enter__()
         | 
| 46 |  | 
|  | |
|  | |
|  | |
| 47 |  | 
| 48 | 
            +
            def interrupt():
         | 
| 49 | 
            +
                global INTERRUPTING
         | 
| 50 | 
            +
                INTERRUPTING = True
         | 
| 51 |  | 
| 52 | 
            +
            def make_waveform(*args, **kwargs):
         | 
| 53 | 
            +
                # Further remove some warnings.
         | 
| 54 | 
            +
                be = time.time()
         | 
| 55 | 
            +
                with warnings.catch_warnings():
         | 
| 56 | 
            +
                    warnings.simplefilter('ignore')
         | 
| 57 | 
            +
                    out = gr.make_waveform(*args, **kwargs)
         | 
| 58 | 
            +
                    print("Make a video took", time.time() - be)
         | 
| 59 | 
            +
                    return out
         | 
| 60 | 
            +
             | 
| 61 | 
            +
             | 
| 62 | 
            +
            def load_model(version='melody'):
         | 
| 63 | 
             
                global MODEL
         | 
| 64 | 
            +
                print("Loading model", version)
         | 
| 65 | 
            +
                if MODEL is None or MODEL.name != version:
         | 
| 66 | 
            +
                    MODEL = MusicGen.get_pretrained(version)
         | 
| 67 | 
            +
             | 
| 68 | 
            +
             | 
| 69 | 
            +
            def _do_predictions(texts, melodies, duration, **gen_kwargs):
         | 
| 70 | 
            +
                MODEL.set_generation_params(duration=duration, **gen_kwargs)
         | 
| 71 | 
            +
                print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies])
         | 
| 72 | 
            +
                be = time.time()
         | 
| 73 | 
            +
                processed_melodies = []
         | 
| 74 | 
            +
                target_sr = 32000
         | 
| 75 | 
            +
                target_ac = 1
         | 
| 76 | 
            +
                for melody in melodies:
         | 
| 77 | 
            +
                    if melody is None:
         | 
| 78 | 
            +
                        processed_melodies.append(None)
         | 
| 79 | 
            +
                    else:
         | 
| 80 | 
            +
                        sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t()
         | 
| 81 | 
            +
                        if melody.dim() == 1:
         | 
| 82 | 
            +
                            melody = melody[None]
         | 
| 83 | 
            +
                        melody = melody[..., :int(sr * duration)]
         | 
| 84 | 
            +
                        melody = convert_audio(melody, sr, target_sr, target_ac)
         | 
| 85 | 
            +
                        processed_melodies.append(melody)
         | 
| 86 |  | 
| 87 | 
            +
                if any(m is not None for m in processed_melodies):
         | 
| 88 | 
            +
                    outputs = MODEL.generate_with_chroma(
         | 
| 89 | 
            +
                        descriptions=texts,
         | 
| 90 | 
            +
                        melody_wavs=processed_melodies,
         | 
| 91 | 
            +
                        melody_sample_rate=target_sr,
         | 
| 92 | 
            +
                        progress=True
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 93 | 
             
                    )
         | 
| 94 | 
             
                else:
         | 
| 95 | 
            +
                    outputs = MODEL.generate(texts, progress=True)
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                outputs = outputs.detach().cpu().float()
         | 
| 98 | 
            +
                out_files = []
         | 
| 99 | 
            +
                for output in outputs:
         | 
| 100 | 
            +
                    with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
         | 
| 101 | 
            +
                        audio_write(
         | 
| 102 | 
            +
                            file.name, output, MODEL.sample_rate, strategy="loudness",
         | 
| 103 | 
            +
                            loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
         | 
| 104 | 
            +
                        out_files.append(pool.submit(make_waveform, file.name))
         | 
| 105 | 
            +
                res = [out_file.result() for out_file in out_files]
         | 
| 106 | 
            +
                print("batch finished", len(texts), time.time() - be)
         | 
| 107 | 
            +
                return res
         | 
| 108 | 
            +
             | 
| 109 | 
            +
             | 
| 110 | 
            +
            def predict_batched(texts, melodies):
         | 
| 111 | 
            +
                max_text_length = 512
         | 
| 112 | 
            +
                texts = [text[:max_text_length] for text in texts]
         | 
| 113 | 
            +
                load_model('melody')
         | 
| 114 | 
            +
                res = _do_predictions(texts, melodies, BATCHED_DURATION)
         | 
| 115 | 
            +
                return [res]
         | 
| 116 | 
            +
             | 
| 117 | 
            +
             | 
| 118 | 
            +
            def predict_full(model, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()):
         | 
| 119 | 
            +
                global INTERRUPTING
         | 
| 120 | 
            +
                INTERRUPTING = False
         | 
| 121 | 
            +
                topk = int(topk)
         | 
| 122 | 
            +
                load_model(model)
         | 
| 123 |  | 
| 124 | 
            +
                def _progress(generated, to_generate):
         | 
| 125 | 
            +
                    progress((generated, to_generate))
         | 
| 126 | 
            +
                    if INTERRUPTING:
         | 
| 127 | 
            +
                        raise gr.Error("Interrupted.")
         | 
| 128 | 
            +
                MODEL.set_custom_progress_callback(_progress)
         | 
|  | |
|  | |
| 129 |  | 
| 130 | 
            +
                outs = _do_predictions(
         | 
| 131 | 
            +
                    [text], [melody], duration,
         | 
| 132 | 
            +
                    top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef)
         | 
| 133 | 
            +
                return outs[0]
         | 
| 134 |  | 
| 135 | 
            +
             | 
| 136 | 
            +
            def ui_full(launch_kwargs):
         | 
| 137 | 
             
                with gr.Blocks() as interface:
         | 
| 138 | 
             
                    gr.Markdown(
         | 
| 139 | 
             
                        """
         | 
|  | |
| 142 | 
             
                        presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
         | 
| 143 | 
             
                        """
         | 
| 144 | 
             
                    )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 145 | 
             
                    with gr.Row():
         | 
| 146 | 
             
                        with gr.Column():
         | 
| 147 | 
             
                            with gr.Row():
         | 
|  | |
| 149 | 
             
                                melody = gr.Audio(source="upload", type="numpy", label="Melody Condition (optional)", interactive=True)
         | 
| 150 | 
             
                            with gr.Row():
         | 
| 151 | 
             
                                submit = gr.Button("Submit")
         | 
| 152 | 
            +
                                # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
         | 
| 153 | 
            +
                                _ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
         | 
| 154 | 
             
                            with gr.Row():
         | 
| 155 | 
             
                                model = gr.Radio(["melody", "medium", "small", "large"], label="Model", value="melody", interactive=True)
         | 
| 156 | 
             
                            with gr.Row():
         | 
| 157 | 
            +
                                duration = gr.Slider(minimum=1, maximum=120, value=10, label="Duration", interactive=True)
         | 
| 158 | 
             
                            with gr.Row():
         | 
| 159 | 
             
                                topk = gr.Number(label="Top-k", value=250, interactive=True)
         | 
| 160 | 
             
                                topp = gr.Number(label="Top-p", value=0, interactive=True)
         | 
|  | |
| 162 | 
             
                                cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
         | 
| 163 | 
             
                        with gr.Column():
         | 
| 164 | 
             
                            output = gr.Video(label="Generated Music")
         | 
| 165 | 
            +
                    submit.click(predict_full, inputs=[model, text, melody, duration, topk, topp, temperature, cfg_coef], outputs=[output])
         | 
| 166 | 
             
                    gr.Examples(
         | 
| 167 | 
            +
                        fn=predict_full,
         | 
| 168 | 
             
                        examples=[
         | 
| 169 | 
             
                            [
         | 
| 170 | 
             
                                "An 80s driving pop song with heavy drums and synth pads in the background",
         | 
|  | |
| 200 | 
             
                        ### More details
         | 
| 201 |  | 
| 202 | 
             
                        The model will generate a short music extract based on the description you provided.
         | 
| 203 | 
            +
                        The model can generate up to 30 seconds of audio in one pass. It is now possible
         | 
| 204 | 
            +
                        to extend the generation by feeding back the end of the previous chunk of audio.
         | 
| 205 | 
            +
                        This can take a long time, and the model might lose consistency. The model might also
         | 
| 206 | 
            +
                        decide at arbitrary positions that the song ends.
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                        **WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min). An overlap of 12 seconds
         | 
| 209 | 
            +
                        is kept with the previously generated chunk, and 18 "new" seconds are generated each time.
         | 
| 210 |  | 
| 211 | 
             
                        We present 4 model variations:
         | 
| 212 | 
             
                        1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only.
         | 
|  | |
| 223 | 
             
                        """
         | 
| 224 | 
             
                    )
         | 
| 225 |  | 
| 226 | 
            +
                    interface.queue().launch(**launch_kwargs)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 227 |  | 
|  | |
| 228 |  | 
| 229 | 
            +
            def ui_batched(launch_kwargs):
         | 
| 230 | 
            +
                with gr.Blocks() as demo:
         | 
| 231 | 
            +
                    gr.Markdown(
         | 
| 232 | 
            +
                        """
         | 
| 233 | 
            +
                        # MusicGen
         | 
|  | |
|  | |
|  | |
| 234 |  | 
| 235 | 
            +
                        This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
         | 
| 236 | 
            +
                        presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
         | 
| 237 | 
            +
                        <br/>
         | 
| 238 | 
            +
                        <a href="https://huggingface.co/spaces/facebook/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
         | 
| 239 | 
            +
                        <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
         | 
| 240 | 
            +
                        for longer sequences, more control and no queue.</p>
         | 
| 241 | 
            +
                        """
         | 
| 242 | 
            +
                    )
         | 
| 243 | 
            +
                    with gr.Row():
         | 
| 244 | 
            +
                        with gr.Column():
         | 
| 245 | 
            +
                            with gr.Row():
         | 
| 246 | 
            +
                                text = gr.Text(label="Describe your music", lines=2, interactive=True)
         | 
| 247 | 
            +
                                melody = gr.Audio(source="upload", type="numpy", label="Condition on a melody (optional)", interactive=True)
         | 
| 248 | 
            +
                            with gr.Row():
         | 
| 249 | 
            +
                                submit = gr.Button("Generate")
         | 
| 250 | 
            +
                        with gr.Column():
         | 
| 251 | 
            +
                            output = gr.Video(label="Generated Music")
         | 
| 252 | 
            +
                    submit.click(predict_batched, inputs=[text, melody], outputs=[output], batch=True, max_batch_size=MAX_BATCH_SIZE)
         | 
| 253 | 
            +
                    gr.Examples(
         | 
| 254 | 
            +
                        fn=predict_batched,
         | 
| 255 | 
            +
                        examples=[
         | 
| 256 | 
            +
                            [
         | 
| 257 | 
            +
                                "An 80s driving pop song with heavy drums and synth pads in the background",
         | 
| 258 | 
            +
                                "./assets/bach.mp3",
         | 
| 259 | 
            +
                            ],
         | 
| 260 | 
            +
                            [
         | 
| 261 | 
            +
                                "A cheerful country song with acoustic guitars",
         | 
| 262 | 
            +
                                "./assets/bolero_ravel.mp3",
         | 
| 263 | 
            +
                            ],
         | 
| 264 | 
            +
                            [
         | 
| 265 | 
            +
                                "90s rock song with electric guitar and heavy drums",
         | 
| 266 | 
            +
                                None,
         | 
| 267 | 
            +
                            ],
         | 
| 268 | 
            +
                            [
         | 
| 269 | 
            +
                                "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
         | 
| 270 | 
            +
                                "./assets/bach.mp3",
         | 
| 271 | 
            +
                            ],
         | 
| 272 | 
            +
                            [
         | 
| 273 | 
            +
                                "lofi slow bpm electro chill with organic samples",
         | 
| 274 | 
            +
                                None,
         | 
| 275 | 
            +
                            ],
         | 
| 276 | 
            +
                        ],
         | 
| 277 | 
            +
                        inputs=[text, melody],
         | 
| 278 | 
            +
                        outputs=[output]
         | 
| 279 | 
            +
                    )
         | 
| 280 | 
            +
                    gr.Markdown("""
         | 
| 281 | 
            +
                    ### More details
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                    The model will generate 12 seconds of audio based on the description you provided.
         | 
| 284 | 
            +
                    You can optionaly provide a reference audio from which a broad melody will be extracted.
         | 
| 285 | 
            +
                    The model will then try to follow both the description and melody provided.
         | 
| 286 | 
            +
                    All samples are generated with the `melody` model.
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                    You can also use your own GPU or a Google Colab by following the instructions on our repo.
         | 
| 289 | 
            +
             | 
| 290 | 
            +
                    See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
         | 
| 291 | 
            +
                    for more details.
         | 
| 292 | 
            +
                    """)
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    demo.queue(max_size=8 * 4).launch(**launch_kwargs)
         | 
| 295 |  | 
| 296 |  | 
| 297 | 
             
            if __name__ == "__main__":
         | 
|  | |
| 299 | 
             
                parser.add_argument(
         | 
| 300 | 
             
                    '--listen',
         | 
| 301 | 
             
                    type=str,
         | 
| 302 | 
            +
            <<<<<<< HEAD
         | 
| 303 | 
             
                    default='0.0.0.0',
         | 
| 304 | 
            +
            =======
         | 
| 305 | 
            +
                    default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
         | 
| 306 | 
            +
            >>>>>>> longgen
         | 
| 307 | 
             
                    help='IP to listen on for connections to Gradio',
         | 
| 308 | 
             
                )
         | 
| 309 | 
             
                parser.add_argument(
         | 
|  | |
| 327 |  | 
| 328 | 
             
                args = parser.parse_args()
         | 
| 329 |  | 
| 330 | 
            +
                launch_kwargs = {}
         | 
| 331 | 
            +
                if args.username and args.password:
         | 
| 332 | 
            +
                    launch_kwargs['auth'] = (args.username, args.password)
         | 
| 333 | 
            +
                if args.server_port:
         | 
| 334 | 
            +
                    launch_kwargs['server_port'] = args.server_port
         | 
| 335 | 
            +
                if args.inbrowser:
         | 
| 336 | 
            +
                    launch_kwargs['inbrowser'] = args.inbrowser
         | 
| 337 | 
            +
                if args.share:
         | 
| 338 | 
            +
                    launch_kwargs['share'] = args.share
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                # Show the interface
         | 
| 341 | 
            +
                if IS_BATCHED:
         | 
| 342 | 
            +
                    ui_batched(launch_kwargs)
         | 
| 343 | 
            +
                else:
         | 
| 344 | 
            +
                    ui_full(launch_kwargs)
         | 
    	
        audiocraft/models/loaders.py
    CHANGED
    
    | @@ -80,8 +80,6 @@ def load_lm_model(file_or_url_or_id: tp.Union[Path, str], device='cpu', cache_di | |
| 80 | 
             
                cfg = OmegaConf.create(pkg['xp.cfg'])
         | 
| 81 | 
             
                cfg.device = str(device)
         | 
| 82 | 
             
                if cfg.device == 'cpu':
         | 
| 83 | 
            -
                    cfg.transformer_lm.memory_efficient = False
         | 
| 84 | 
            -
                    cfg.transformer_lm.custom = True
         | 
| 85 | 
             
                    cfg.dtype = 'float32'
         | 
| 86 | 
             
                else:
         | 
| 87 | 
             
                    cfg.dtype = 'float16'
         | 
|  | |
| 80 | 
             
                cfg = OmegaConf.create(pkg['xp.cfg'])
         | 
| 81 | 
             
                cfg.device = str(device)
         | 
| 82 | 
             
                if cfg.device == 'cpu':
         | 
|  | |
|  | |
| 83 | 
             
                    cfg.dtype = 'float32'
         | 
| 84 | 
             
                else:
         | 
| 85 | 
             
                    cfg.dtype = 'float16'
         | 
    	
        audiocraft/models/musicgen.py
    CHANGED
    
    | @@ -36,13 +36,16 @@ class MusicGen: | |
| 36 | 
             
                        used to map audio to invertible discrete representations.
         | 
| 37 | 
             
                    lm (LMModel): Language model over discrete representations.
         | 
| 38 | 
             
                """
         | 
| 39 | 
            -
                def __init__(self, name: str, compression_model: CompressionModel, lm: LMModel | 
|  | |
| 40 | 
             
                    self.name = name
         | 
| 41 | 
             
                    self.compression_model = compression_model
         | 
| 42 | 
             
                    self.lm = lm
         | 
|  | |
| 43 | 
             
                    self.device = next(iter(lm.parameters())).device
         | 
| 44 | 
             
                    self.generation_params: dict = {}
         | 
| 45 | 
             
                    self.set_generation_params(duration=15)  # 15 seconds by default
         | 
|  | |
| 46 | 
             
                    if self.device.type == 'cpu':
         | 
| 47 | 
             
                        self.autocast = TorchAutocast(enabled=False)
         | 
| 48 | 
             
                    else:
         | 
| @@ -65,7 +68,7 @@ class MusicGen: | |
| 65 | 
             
                    return self.compression_model.channels
         | 
| 66 |  | 
| 67 | 
             
                @staticmethod
         | 
| 68 | 
            -
                def get_pretrained(name: str = 'melody', device= | 
| 69 | 
             
                    """Return pretrained model, we provide four models:
         | 
| 70 | 
             
                    - small (300M), text to music, # see: https://huggingface.co/facebook/musicgen-small
         | 
| 71 | 
             
                    - medium (1.5B), text to music, # see: https://huggingface.co/facebook/musicgen-medium
         | 
| @@ -73,6 +76,12 @@ class MusicGen: | |
| 73 | 
             
                    - large (3.3B), text to music, # see: https://huggingface.co/facebook/musicgen-large
         | 
| 74 | 
             
                    """
         | 
| 75 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 76 | 
             
                    if name == 'debug':
         | 
| 77 | 
             
                        # used only for unit tests
         | 
| 78 | 
             
                        compression_model = get_debug_compression_model(device)
         | 
| @@ -96,7 +105,7 @@ class MusicGen: | |
| 96 | 
             
                def set_generation_params(self, use_sampling: bool = True, top_k: int = 250,
         | 
| 97 | 
             
                                          top_p: float = 0.0, temperature: float = 1.0,
         | 
| 98 | 
             
                                          duration: float = 30.0, cfg_coef: float = 3.0,
         | 
| 99 | 
            -
                                          two_step_cfg: bool = False, extend_stride: float =  | 
| 100 | 
             
                    """Set the generation parameters for MusicGen.
         | 
| 101 |  | 
| 102 | 
             
                    Args:
         | 
| @@ -113,11 +122,10 @@ class MusicGen: | |
| 113 | 
             
                            should we extend the audio each time. Larger values will mean less context is
         | 
| 114 | 
             
                            preserved, and shorter value will require extra computations.
         | 
| 115 | 
             
                    """
         | 
| 116 | 
            -
                     | 
| 117 | 
            -
                    assert extend_stride <= 25, "Keep at least 5 seconds of overlap!"
         | 
| 118 | 
             
                    self.extend_stride = extend_stride
         | 
|  | |
| 119 | 
             
                    self.generation_params = {
         | 
| 120 | 
            -
                        'max_gen_len': int(duration * self.frame_rate),
         | 
| 121 | 
             
                        'use_sampling': use_sampling,
         | 
| 122 | 
             
                        'temp': temperature,
         | 
| 123 | 
             
                        'top_k': top_k,
         | 
| @@ -126,6 +134,10 @@ class MusicGen: | |
| 126 | 
             
                        'two_step_cfg': two_step_cfg,
         | 
| 127 | 
             
                    }
         | 
| 128 |  | 
|  | |
|  | |
|  | |
|  | |
| 129 | 
             
                def generate_unconditional(self, num_samples: int, progress: bool = False) -> torch.Tensor:
         | 
| 130 | 
             
                    """Generate samples in an unconditional manner.
         | 
| 131 |  | 
| @@ -268,20 +280,79 @@ class MusicGen: | |
| 268 | 
             
                    Returns:
         | 
| 269 | 
             
                        torch.Tensor: Generated audio, of shape [B, C, T], T is defined by the generation params.
         | 
| 270 | 
             
                    """
         | 
|  | |
|  | |
|  | |
|  | |
| 271 | 
             
                    def _progress_callback(generated_tokens: int, tokens_to_generate: int):
         | 
| 272 | 
            -
                         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 273 |  | 
| 274 | 
             
                    if prompt_tokens is not None:
         | 
| 275 | 
            -
                        assert  | 
| 276 | 
             
                            "Prompt is longer than audio to generate"
         | 
| 277 |  | 
| 278 | 
             
                    callback = None
         | 
| 279 | 
             
                    if progress:
         | 
| 280 | 
             
                        callback = _progress_callback
         | 
| 281 |  | 
| 282 | 
            -
                     | 
| 283 | 
            -
             | 
| 284 | 
            -
                         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 285 |  | 
| 286 | 
             
                    # generate audio
         | 
| 287 | 
             
                    assert gen_tokens.dim() == 3
         | 
|  | |
| 36 | 
             
                        used to map audio to invertible discrete representations.
         | 
| 37 | 
             
                    lm (LMModel): Language model over discrete representations.
         | 
| 38 | 
             
                """
         | 
| 39 | 
            +
                def __init__(self, name: str, compression_model: CompressionModel, lm: LMModel,
         | 
| 40 | 
            +
                             max_duration: float = 30):
         | 
| 41 | 
             
                    self.name = name
         | 
| 42 | 
             
                    self.compression_model = compression_model
         | 
| 43 | 
             
                    self.lm = lm
         | 
| 44 | 
            +
                    self.max_duration = max_duration
         | 
| 45 | 
             
                    self.device = next(iter(lm.parameters())).device
         | 
| 46 | 
             
                    self.generation_params: dict = {}
         | 
| 47 | 
             
                    self.set_generation_params(duration=15)  # 15 seconds by default
         | 
| 48 | 
            +
                    self._progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None
         | 
| 49 | 
             
                    if self.device.type == 'cpu':
         | 
| 50 | 
             
                        self.autocast = TorchAutocast(enabled=False)
         | 
| 51 | 
             
                    else:
         | 
|  | |
| 68 | 
             
                    return self.compression_model.channels
         | 
| 69 |  | 
| 70 | 
             
                @staticmethod
         | 
| 71 | 
            +
                def get_pretrained(name: str = 'melody', device=None):
         | 
| 72 | 
             
                    """Return pretrained model, we provide four models:
         | 
| 73 | 
             
                    - small (300M), text to music, # see: https://huggingface.co/facebook/musicgen-small
         | 
| 74 | 
             
                    - medium (1.5B), text to music, # see: https://huggingface.co/facebook/musicgen-medium
         | 
|  | |
| 76 | 
             
                    - large (3.3B), text to music, # see: https://huggingface.co/facebook/musicgen-large
         | 
| 77 | 
             
                    """
         | 
| 78 |  | 
| 79 | 
            +
                    if device is None:
         | 
| 80 | 
            +
                        if torch.cuda.device_count():
         | 
| 81 | 
            +
                            device = 'cuda'
         | 
| 82 | 
            +
                        else:
         | 
| 83 | 
            +
                            device = 'cpu'
         | 
| 84 | 
            +
             | 
| 85 | 
             
                    if name == 'debug':
         | 
| 86 | 
             
                        # used only for unit tests
         | 
| 87 | 
             
                        compression_model = get_debug_compression_model(device)
         | 
|  | |
| 105 | 
             
                def set_generation_params(self, use_sampling: bool = True, top_k: int = 250,
         | 
| 106 | 
             
                                          top_p: float = 0.0, temperature: float = 1.0,
         | 
| 107 | 
             
                                          duration: float = 30.0, cfg_coef: float = 3.0,
         | 
| 108 | 
            +
                                          two_step_cfg: bool = False, extend_stride: float = 18):
         | 
| 109 | 
             
                    """Set the generation parameters for MusicGen.
         | 
| 110 |  | 
| 111 | 
             
                    Args:
         | 
|  | |
| 122 | 
             
                            should we extend the audio each time. Larger values will mean less context is
         | 
| 123 | 
             
                            preserved, and shorter value will require extra computations.
         | 
| 124 | 
             
                    """
         | 
| 125 | 
            +
                    assert extend_stride < self.max_duration, "Cannot stride by more than max generation duration."
         | 
|  | |
| 126 | 
             
                    self.extend_stride = extend_stride
         | 
| 127 | 
            +
                    self.duration = duration
         | 
| 128 | 
             
                    self.generation_params = {
         | 
|  | |
| 129 | 
             
                        'use_sampling': use_sampling,
         | 
| 130 | 
             
                        'temp': temperature,
         | 
| 131 | 
             
                        'top_k': top_k,
         | 
|  | |
| 134 | 
             
                        'two_step_cfg': two_step_cfg,
         | 
| 135 | 
             
                    }
         | 
| 136 |  | 
| 137 | 
            +
                def set_custom_progress_callback(self, progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None):
         | 
| 138 | 
            +
                    """Override the default progress callback."""
         | 
| 139 | 
            +
                    self._progress_callback = progress_callback
         | 
| 140 | 
            +
             | 
| 141 | 
             
                def generate_unconditional(self, num_samples: int, progress: bool = False) -> torch.Tensor:
         | 
| 142 | 
             
                    """Generate samples in an unconditional manner.
         | 
| 143 |  | 
|  | |
| 280 | 
             
                    Returns:
         | 
| 281 | 
             
                        torch.Tensor: Generated audio, of shape [B, C, T], T is defined by the generation params.
         | 
| 282 | 
             
                    """
         | 
| 283 | 
            +
                    total_gen_len = int(self.duration * self.frame_rate)
         | 
| 284 | 
            +
                    max_prompt_len = int(min(self.duration, self.max_duration) * self.frame_rate)
         | 
| 285 | 
            +
                    current_gen_offset: int = 0
         | 
| 286 | 
            +
             | 
| 287 | 
             
                    def _progress_callback(generated_tokens: int, tokens_to_generate: int):
         | 
| 288 | 
            +
                        generated_tokens += current_gen_offset
         | 
| 289 | 
            +
                        if self._progress_callback is not None:
         | 
| 290 | 
            +
                            # Note that total_gen_len might be quite wrong depending on the
         | 
| 291 | 
            +
                            # codebook pattern used, but with delay it is almost accurate.
         | 
| 292 | 
            +
                            self._progress_callback(generated_tokens, total_gen_len)
         | 
| 293 | 
            +
                        else:
         | 
| 294 | 
            +
                            print(f'{generated_tokens: 6d} / {total_gen_len: 6d}', end='\r')
         | 
| 295 |  | 
| 296 | 
             
                    if prompt_tokens is not None:
         | 
| 297 | 
            +
                        assert max_prompt_len >= prompt_tokens.shape[-1], \
         | 
| 298 | 
             
                            "Prompt is longer than audio to generate"
         | 
| 299 |  | 
| 300 | 
             
                    callback = None
         | 
| 301 | 
             
                    if progress:
         | 
| 302 | 
             
                        callback = _progress_callback
         | 
| 303 |  | 
| 304 | 
            +
                    if self.duration <= self.max_duration:
         | 
| 305 | 
            +
                        # generate by sampling from LM, simple case.
         | 
| 306 | 
            +
                        with self.autocast:
         | 
| 307 | 
            +
                            gen_tokens = self.lm.generate(
         | 
| 308 | 
            +
                                prompt_tokens, attributes,
         | 
| 309 | 
            +
                                callback=callback, max_gen_len=total_gen_len, **self.generation_params)
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                    else:
         | 
| 312 | 
            +
                        # now this gets a bit messier, we need to handle prompts,
         | 
| 313 | 
            +
                        # melody conditioning etc.
         | 
| 314 | 
            +
                        ref_wavs = [attr.wav['self_wav'] for attr in attributes]
         | 
| 315 | 
            +
                        all_tokens = []
         | 
| 316 | 
            +
                        if prompt_tokens is None:
         | 
| 317 | 
            +
                            prompt_length = 0
         | 
| 318 | 
            +
                        else:
         | 
| 319 | 
            +
                            all_tokens.append(prompt_tokens)
         | 
| 320 | 
            +
                            prompt_length = prompt_tokens.shape[-1]
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                        stride_tokens = int(self.frame_rate * self.extend_stride)
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                        while current_gen_offset + prompt_length < total_gen_len:
         | 
| 325 | 
            +
                            time_offset = current_gen_offset / self.frame_rate
         | 
| 326 | 
            +
                            chunk_duration = min(self.duration - time_offset, self.max_duration)
         | 
| 327 | 
            +
                            max_gen_len = int(chunk_duration * self.frame_rate)
         | 
| 328 | 
            +
                            for attr, ref_wav in zip(attributes, ref_wavs):
         | 
| 329 | 
            +
                                wav_length = ref_wav.length.item()
         | 
| 330 | 
            +
                                if wav_length == 0:
         | 
| 331 | 
            +
                                    continue
         | 
| 332 | 
            +
                                # We will extend the wav periodically if it not long enough.
         | 
| 333 | 
            +
                                # we have to do it here rather than in conditioners.py as otherwise
         | 
| 334 | 
            +
                                # we wouldn't have the full wav.
         | 
| 335 | 
            +
                                initial_position = int(time_offset * self.sample_rate)
         | 
| 336 | 
            +
                                wav_target_length = int(self.max_duration * self.sample_rate)
         | 
| 337 | 
            +
                                print(initial_position / self.sample_rate, wav_target_length / self.sample_rate)
         | 
| 338 | 
            +
                                positions = torch.arange(initial_position,
         | 
| 339 | 
            +
                                                         initial_position + wav_target_length, device=self.device)
         | 
| 340 | 
            +
                                attr.wav['self_wav'] = WavCondition(
         | 
| 341 | 
            +
                                    ref_wav[0][:, positions % wav_length],
         | 
| 342 | 
            +
                                    torch.full_like(ref_wav[1], wav_target_length))
         | 
| 343 | 
            +
                            with self.autocast:
         | 
| 344 | 
            +
                                gen_tokens = self.lm.generate(
         | 
| 345 | 
            +
                                    prompt_tokens, attributes,
         | 
| 346 | 
            +
                                    callback=callback, max_gen_len=max_gen_len, **self.generation_params)
         | 
| 347 | 
            +
                            if prompt_tokens is None:
         | 
| 348 | 
            +
                                all_tokens.append(gen_tokens)
         | 
| 349 | 
            +
                            else:
         | 
| 350 | 
            +
                                all_tokens.append(gen_tokens[:, :, prompt_tokens.shape[-1]:])
         | 
| 351 | 
            +
                            prompt_tokens = gen_tokens[:, :, stride_tokens:]
         | 
| 352 | 
            +
                            prompt_length = prompt_tokens.shape[-1]
         | 
| 353 | 
            +
                            current_gen_offset += stride_tokens
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                        gen_tokens = torch.cat(all_tokens, dim=-1)
         | 
| 356 |  | 
| 357 | 
             
                    # generate audio
         | 
| 358 | 
             
                    assert gen_tokens.dim() == 3
         | 
    	
        audiocraft/modules/transformer.py
    CHANGED
    
    | @@ -25,6 +25,22 @@ from xformers import ops | |
| 25 | 
             
            from .rope import RotaryEmbedding
         | 
| 26 | 
             
            from .streaming import StreamingModule
         | 
| 27 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 28 |  | 
| 29 | 
             
            def _is_profiled() -> bool:
         | 
| 30 | 
             
                # Return true if we are currently running with a xformers profiler activated.
         | 
| @@ -75,14 +91,22 @@ def create_sin_embedding(positions: torch.Tensor, dim: int, max_period: float = | |
| 75 |  | 
| 76 | 
             
            def expand_repeated_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 77 | 
             
                """torch.repeat_interleave(x, dim=2, repeats=n_rep) from xlformers"""
         | 
| 78 | 
            -
                bs, slen, n_kv_heads, head_dim = x.shape
         | 
| 79 | 
             
                if n_rep == 1:
         | 
| 80 | 
             
                    return x
         | 
| 81 | 
            -
                 | 
| 82 | 
            -
                     | 
| 83 | 
            -
                     | 
| 84 | 
            -
             | 
| 85 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 86 |  | 
| 87 |  | 
| 88 | 
             
            class LayerScale(nn.Module):
         | 
| @@ -210,6 +234,7 @@ class StreamingMultiheadAttention(StreamingModule): | |
| 210 | 
             
                    # Return a causal mask, accounting for potentially stored past keys/values
         | 
| 211 | 
             
                    # We actually return a bias for the attention score, as this has the same
         | 
| 212 | 
             
                    # convention both in the builtin MHA in Pytorch, and Xformers functions.
         | 
|  | |
| 213 | 
             
                    if self.memory_efficient:
         | 
| 214 | 
             
                        from xformers.ops import LowerTriangularMask
         | 
| 215 | 
             
                        if current_steps == 1:
         | 
| @@ -222,7 +247,7 @@ class StreamingMultiheadAttention(StreamingModule): | |
| 222 | 
             
                            return LowerTriangularMask()
         | 
| 223 | 
             
                    if self._streaming_state:
         | 
| 224 | 
             
                        past_keys = self._streaming_state['past_keys']
         | 
| 225 | 
            -
                        past_steps = past_keys.shape[ | 
| 226 | 
             
                    else:
         | 
| 227 | 
             
                        past_steps = 0
         | 
| 228 |  | 
| @@ -239,6 +264,7 @@ class StreamingMultiheadAttention(StreamingModule): | |
| 239 | 
             
                        torch.full([], float('-inf'), device=device, dtype=dtype))
         | 
| 240 |  | 
| 241 | 
             
                def _complete_kv(self, k, v):
         | 
|  | |
| 242 | 
             
                    if self.cross_attention:
         | 
| 243 | 
             
                        # With cross attention we assume all keys and values
         | 
| 244 | 
             
                        # are already available, and streaming is with respect
         | 
| @@ -247,20 +273,20 @@ class StreamingMultiheadAttention(StreamingModule): | |
| 247 | 
             
                    # Complete the key/value pair using the streaming state.
         | 
| 248 | 
             
                    if self._streaming_state:
         | 
| 249 | 
             
                        pk = self._streaming_state['past_keys']
         | 
| 250 | 
            -
                        nk = torch.cat([pk, k], dim= | 
| 251 | 
             
                        if v is k:
         | 
| 252 | 
             
                            nv = nk
         | 
| 253 | 
             
                        else:
         | 
| 254 | 
             
                            pv = self._streaming_state['past_values']
         | 
| 255 | 
            -
                            nv = torch.cat([pv, v], dim= | 
| 256 | 
             
                    else:
         | 
| 257 | 
             
                        nk = k
         | 
| 258 | 
             
                        nv = v
         | 
| 259 |  | 
| 260 | 
            -
                    assert nk.shape[ | 
| 261 | 
             
                    offset = 0
         | 
| 262 | 
             
                    if self.past_context is not None:
         | 
| 263 | 
            -
                        offset = max(0, nk.shape[ | 
| 264 | 
             
                    if self._is_streaming:
         | 
| 265 | 
             
                        self._streaming_state['past_keys'] = nk[:, offset:]
         | 
| 266 | 
             
                        if v is not k:
         | 
| @@ -271,8 +297,9 @@ class StreamingMultiheadAttention(StreamingModule): | |
| 271 | 
             
                            self._streaming_state['offset'] = torch.tensor(0)
         | 
| 272 | 
             
                    return nk, nv
         | 
| 273 |  | 
| 274 | 
            -
             | 
| 275 | 
             
                def _apply_rope(self, query: torch.Tensor, key: torch.Tensor):
         | 
|  | |
|  | |
| 276 | 
             
                    # Apply rope embeddings to query and key tensors.
         | 
| 277 | 
             
                    assert self.rope is not None
         | 
| 278 | 
             
                    if 'past_keys' in self._streaming_state:
         | 
| @@ -293,6 +320,11 @@ class StreamingMultiheadAttention(StreamingModule): | |
| 293 | 
             
                    assert not is_causal, ("new param added in torch 2.0.1 not supported, "
         | 
| 294 | 
             
                                           "use the causal args in the constructor.")
         | 
| 295 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 296 | 
             
                    dtype = query.dtype
         | 
| 297 | 
             
                    if self._is_streaming:
         | 
| 298 | 
             
                        assert self.causal or self.cross_attention, \
         | 
| @@ -325,8 +357,7 @@ class StreamingMultiheadAttention(StreamingModule): | |
| 325 | 
             
                            if self.qk_layer_norm is True:
         | 
| 326 | 
             
                                q = self.q_layer_norm(q)
         | 
| 327 | 
             
                                k = self.k_layer_norm(k)
         | 
| 328 | 
            -
                             | 
| 329 | 
            -
                            q, k, v = [rearrange(x, "b t (h d) -> b h t d", h=self.num_heads) for x in [q, k, v]]
         | 
| 330 | 
             
                        else:
         | 
| 331 | 
             
                            if not _is_profiled():
         | 
| 332 | 
             
                                # profiling breaks that propertysomehow.
         | 
| @@ -334,7 +365,11 @@ class StreamingMultiheadAttention(StreamingModule): | |
| 334 | 
             
                                assert value is key, "specialized implementation"
         | 
| 335 | 
             
                            projected = nn.functional.linear(query, self.in_proj_weight, self.in_proj_bias)
         | 
| 336 | 
             
                            if self.kv_repeat == 1:
         | 
| 337 | 
            -
                                 | 
|  | |
|  | |
|  | |
|  | |
| 338 | 
             
                                q, k, v = ops.unbind(packed, dim=2)
         | 
| 339 | 
             
                            else:
         | 
| 340 | 
             
                                embed_dim = self.embed_dim
         | 
| @@ -345,18 +380,17 @@ class StreamingMultiheadAttention(StreamingModule): | |
| 345 | 
             
                                end = start + per_head_dim * kv_heads
         | 
| 346 | 
             
                                k = projected[:, :, start: end]
         | 
| 347 | 
             
                                v = projected[:, :, end:]
         | 
| 348 | 
            -
                                q = rearrange(q, "b t (h d) ->  | 
| 349 | 
            -
                                k = rearrange(k, "b t (h d) ->  | 
| 350 | 
            -
                                v = rearrange(v, "b t (h d) ->  | 
| 351 |  | 
| 352 | 
             
                            if self.qk_layer_norm is True:
         | 
| 353 | 
             
                                assert self.kv_repeat == 1
         | 
| 354 | 
            -
                                q, k = [rearrange(x, " | 
| 355 | 
             
                                q = self.q_layer_norm(q)
         | 
| 356 | 
             
                                k = self.k_layer_norm(k)
         | 
| 357 | 
            -
                                q, k = [rearrange(x, "b t (h d) ->  | 
| 358 | 
             
                            if self.rope:
         | 
| 359 | 
            -
                                assert False, "Not supported for now"
         | 
| 360 | 
             
                                q, k = self._apply_rope(q, k)
         | 
| 361 | 
             
                            k, v = self._complete_kv(k, v)
         | 
| 362 | 
             
                            if self.kv_repeat > 1:
         | 
| @@ -366,8 +400,11 @@ class StreamingMultiheadAttention(StreamingModule): | |
| 366 | 
             
                            q, k, v = [x.float() for x in [q, k, v]]
         | 
| 367 | 
             
                        if self.memory_efficient:
         | 
| 368 | 
             
                            p = self.dropout if self.training else 0
         | 
| 369 | 
            -
                             | 
| 370 | 
            -
                                 | 
|  | |
|  | |
|  | |
| 371 | 
             
                        else:
         | 
| 372 | 
             
                            # We include the dot product as float32, for consistency
         | 
| 373 | 
             
                            # with the other implementations that include that step
         | 
| @@ -377,18 +414,21 @@ class StreamingMultiheadAttention(StreamingModule): | |
| 377 | 
             
                            # extend a bit the range of operations done in float32,
         | 
| 378 | 
             
                            # although this should make no difference.
         | 
| 379 | 
             
                            q = q / q.shape[-1] ** 0.5
         | 
|  | |
|  | |
| 380 | 
             
                            if self._is_streaming and self.safe_streaming and q.device.type == 'cuda':
         | 
| 381 | 
             
                                with torch.autocast(device_type=q.device.type, dtype=torch.float32):
         | 
| 382 | 
            -
                                    pre_w = torch.einsum(" | 
| 383 | 
             
                            else:
         | 
| 384 | 
            -
                                pre_w = torch.einsum(" | 
| 385 | 
             
                            if attn_mask is not None:
         | 
| 386 | 
             
                                pre_w = pre_w + attn_mask
         | 
| 387 | 
             
                            w = torch.softmax(pre_w, dim=-1)
         | 
| 388 | 
             
                            w = F.dropout(w, self.dropout, training=self.training).to(v)
         | 
| 389 | 
            -
                             | 
|  | |
| 390 | 
             
                        x = x.to(dtype)
         | 
| 391 | 
            -
                        x = rearrange(x, " | 
| 392 | 
             
                        x = self.out_proj(x)
         | 
| 393 | 
             
                    else:
         | 
| 394 | 
             
                        key, value = self._complete_kv(key, value)
         | 
|  | |
| 25 | 
             
            from .rope import RotaryEmbedding
         | 
| 26 | 
             
            from .streaming import StreamingModule
         | 
| 27 |  | 
| 28 | 
            +
            _efficient_attention_backend: str = 'torch'
         | 
| 29 | 
            +
             | 
| 30 | 
            +
             | 
| 31 | 
            +
            def set_efficient_attention_backend(backend: str = 'torch'):
         | 
| 32 | 
            +
                # Using torch by default, it seems a bit faster on older P100 GPUs (~20% faster).
         | 
| 33 | 
            +
                global _efficient_attention_backend
         | 
| 34 | 
            +
                assert _efficient_attention_backend in ['xformers', 'torch']
         | 
| 35 | 
            +
                _efficient_attention_backend = backend
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            def _get_attention_time_dimension() -> int:
         | 
| 39 | 
            +
                if _efficient_attention_backend == 'torch':
         | 
| 40 | 
            +
                    return 2
         | 
| 41 | 
            +
                else:
         | 
| 42 | 
            +
                    return 1
         | 
| 43 | 
            +
             | 
| 44 |  | 
| 45 | 
             
            def _is_profiled() -> bool:
         | 
| 46 | 
             
                # Return true if we are currently running with a xformers profiler activated.
         | 
|  | |
| 91 |  | 
| 92 | 
             
            def expand_repeated_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 93 | 
             
                """torch.repeat_interleave(x, dim=2, repeats=n_rep) from xlformers"""
         | 
|  | |
| 94 | 
             
                if n_rep == 1:
         | 
| 95 | 
             
                    return x
         | 
| 96 | 
            +
                if _efficient_attention_backend == 'torch':
         | 
| 97 | 
            +
                    bs, n_kv_heads, slen, head_dim = x.shape
         | 
| 98 | 
            +
                    return (
         | 
| 99 | 
            +
                        x[:, :, None, :, :]
         | 
| 100 | 
            +
                        .expand(bs, n_kv_heads, n_rep, slen, head_dim)
         | 
| 101 | 
            +
                        .reshape(bs, n_kv_heads * n_rep, slen, head_dim)
         | 
| 102 | 
            +
                    )
         | 
| 103 | 
            +
                else:
         | 
| 104 | 
            +
                    bs, slen, n_kv_heads, head_dim = x.shape
         | 
| 105 | 
            +
                    return (
         | 
| 106 | 
            +
                        x[:, :, :, None, :]
         | 
| 107 | 
            +
                        .expand(bs, slen, n_kv_heads, n_rep, head_dim)
         | 
| 108 | 
            +
                        .reshape(bs, slen, n_kv_heads * n_rep, head_dim)
         | 
| 109 | 
            +
                    )
         | 
| 110 |  | 
| 111 |  | 
| 112 | 
             
            class LayerScale(nn.Module):
         | 
|  | |
| 234 | 
             
                    # Return a causal mask, accounting for potentially stored past keys/values
         | 
| 235 | 
             
                    # We actually return a bias for the attention score, as this has the same
         | 
| 236 | 
             
                    # convention both in the builtin MHA in Pytorch, and Xformers functions.
         | 
| 237 | 
            +
                    time_dim = _get_attention_time_dimension()
         | 
| 238 | 
             
                    if self.memory_efficient:
         | 
| 239 | 
             
                        from xformers.ops import LowerTriangularMask
         | 
| 240 | 
             
                        if current_steps == 1:
         | 
|  | |
| 247 | 
             
                            return LowerTriangularMask()
         | 
| 248 | 
             
                    if self._streaming_state:
         | 
| 249 | 
             
                        past_keys = self._streaming_state['past_keys']
         | 
| 250 | 
            +
                        past_steps = past_keys.shape[time_dim]
         | 
| 251 | 
             
                    else:
         | 
| 252 | 
             
                        past_steps = 0
         | 
| 253 |  | 
|  | |
| 264 | 
             
                        torch.full([], float('-inf'), device=device, dtype=dtype))
         | 
| 265 |  | 
| 266 | 
             
                def _complete_kv(self, k, v):
         | 
| 267 | 
            +
                    time_dim = _get_attention_time_dimension()
         | 
| 268 | 
             
                    if self.cross_attention:
         | 
| 269 | 
             
                        # With cross attention we assume all keys and values
         | 
| 270 | 
             
                        # are already available, and streaming is with respect
         | 
|  | |
| 273 | 
             
                    # Complete the key/value pair using the streaming state.
         | 
| 274 | 
             
                    if self._streaming_state:
         | 
| 275 | 
             
                        pk = self._streaming_state['past_keys']
         | 
| 276 | 
            +
                        nk = torch.cat([pk, k], dim=time_dim)
         | 
| 277 | 
             
                        if v is k:
         | 
| 278 | 
             
                            nv = nk
         | 
| 279 | 
             
                        else:
         | 
| 280 | 
             
                            pv = self._streaming_state['past_values']
         | 
| 281 | 
            +
                            nv = torch.cat([pv, v], dim=time_dim)
         | 
| 282 | 
             
                    else:
         | 
| 283 | 
             
                        nk = k
         | 
| 284 | 
             
                        nv = v
         | 
| 285 |  | 
| 286 | 
            +
                    assert nk.shape[time_dim] == nv.shape[time_dim]
         | 
| 287 | 
             
                    offset = 0
         | 
| 288 | 
             
                    if self.past_context is not None:
         | 
| 289 | 
            +
                        offset = max(0, nk.shape[time_dim] - self.past_context)
         | 
| 290 | 
             
                    if self._is_streaming:
         | 
| 291 | 
             
                        self._streaming_state['past_keys'] = nk[:, offset:]
         | 
| 292 | 
             
                        if v is not k:
         | 
|  | |
| 297 | 
             
                            self._streaming_state['offset'] = torch.tensor(0)
         | 
| 298 | 
             
                    return nk, nv
         | 
| 299 |  | 
|  | |
| 300 | 
             
                def _apply_rope(self, query: torch.Tensor, key: torch.Tensor):
         | 
| 301 | 
            +
                    # TODO: fix and verify layout.
         | 
| 302 | 
            +
                    assert _efficient_attention_backend == 'xformers', 'Rope not supported with torch attn.'
         | 
| 303 | 
             
                    # Apply rope embeddings to query and key tensors.
         | 
| 304 | 
             
                    assert self.rope is not None
         | 
| 305 | 
             
                    if 'past_keys' in self._streaming_state:
         | 
|  | |
| 320 | 
             
                    assert not is_causal, ("new param added in torch 2.0.1 not supported, "
         | 
| 321 | 
             
                                           "use the causal args in the constructor.")
         | 
| 322 |  | 
| 323 | 
            +
                    time_dim = _get_attention_time_dimension()
         | 
| 324 | 
            +
                    if time_dim == 2:
         | 
| 325 | 
            +
                        layout = "b h t d"
         | 
| 326 | 
            +
                    else:
         | 
| 327 | 
            +
                        layout = "b t h d"
         | 
| 328 | 
             
                    dtype = query.dtype
         | 
| 329 | 
             
                    if self._is_streaming:
         | 
| 330 | 
             
                        assert self.causal or self.cross_attention, \
         | 
|  | |
| 357 | 
             
                            if self.qk_layer_norm is True:
         | 
| 358 | 
             
                                q = self.q_layer_norm(q)
         | 
| 359 | 
             
                                k = self.k_layer_norm(k)
         | 
| 360 | 
            +
                            q, k, v = [rearrange(x, f"b t (h d) -> {layout}", h=self.num_heads) for x in [q, k, v]]
         | 
|  | |
| 361 | 
             
                        else:
         | 
| 362 | 
             
                            if not _is_profiled():
         | 
| 363 | 
             
                                # profiling breaks that propertysomehow.
         | 
|  | |
| 365 | 
             
                                assert value is key, "specialized implementation"
         | 
| 366 | 
             
                            projected = nn.functional.linear(query, self.in_proj_weight, self.in_proj_bias)
         | 
| 367 | 
             
                            if self.kv_repeat == 1:
         | 
| 368 | 
            +
                                if time_dim == 2:
         | 
| 369 | 
            +
                                    bound_layout = "b h p t d"
         | 
| 370 | 
            +
                                else:
         | 
| 371 | 
            +
                                    bound_layout = "b t p h d"
         | 
| 372 | 
            +
                                packed = rearrange(projected, f"b t (p h d) -> {bound_layout}", p=3, h=self.num_heads)
         | 
| 373 | 
             
                                q, k, v = ops.unbind(packed, dim=2)
         | 
| 374 | 
             
                            else:
         | 
| 375 | 
             
                                embed_dim = self.embed_dim
         | 
|  | |
| 380 | 
             
                                end = start + per_head_dim * kv_heads
         | 
| 381 | 
             
                                k = projected[:, :, start: end]
         | 
| 382 | 
             
                                v = projected[:, :, end:]
         | 
| 383 | 
            +
                                q = rearrange(q, f"b t (h d) -> {layout}", h=self.num_heads)
         | 
| 384 | 
            +
                                k = rearrange(k, f"b t (h d) -> {layout}", h=kv_heads)
         | 
| 385 | 
            +
                                v = rearrange(v, f"b t (h d) -> {layout}", h=kv_heads)
         | 
| 386 |  | 
| 387 | 
             
                            if self.qk_layer_norm is True:
         | 
| 388 | 
             
                                assert self.kv_repeat == 1
         | 
| 389 | 
            +
                                q, k = [rearrange(x, f"{layout} -> b t (h d)") for x in [q, k]]
         | 
| 390 | 
             
                                q = self.q_layer_norm(q)
         | 
| 391 | 
             
                                k = self.k_layer_norm(k)
         | 
| 392 | 
            +
                                q, k = [rearrange(x, f"b t (h d) -> {layout}", h=self.num_heads) for x in [q, k]]
         | 
| 393 | 
             
                            if self.rope:
         | 
|  | |
| 394 | 
             
                                q, k = self._apply_rope(q, k)
         | 
| 395 | 
             
                            k, v = self._complete_kv(k, v)
         | 
| 396 | 
             
                            if self.kv_repeat > 1:
         | 
|  | |
| 400 | 
             
                            q, k, v = [x.float() for x in [q, k, v]]
         | 
| 401 | 
             
                        if self.memory_efficient:
         | 
| 402 | 
             
                            p = self.dropout if self.training else 0
         | 
| 403 | 
            +
                            if _efficient_attention_backend == 'torch':
         | 
| 404 | 
            +
                                x = torch.nn.functional.scaled_dot_product_attention(
         | 
| 405 | 
            +
                                    q, k, v, is_causal=attn_mask is not None, dropout_p=p)
         | 
| 406 | 
            +
                            else:
         | 
| 407 | 
            +
                                x = ops.memory_efficient_attention(q, k, v, attn_mask, p=p)
         | 
| 408 | 
             
                        else:
         | 
| 409 | 
             
                            # We include the dot product as float32, for consistency
         | 
| 410 | 
             
                            # with the other implementations that include that step
         | 
|  | |
| 414 | 
             
                            # extend a bit the range of operations done in float32,
         | 
| 415 | 
             
                            # although this should make no difference.
         | 
| 416 | 
             
                            q = q / q.shape[-1] ** 0.5
         | 
| 417 | 
            +
                            key_layout = layout.replace('t', 'k')
         | 
| 418 | 
            +
                            query_layout = layout
         | 
| 419 | 
             
                            if self._is_streaming and self.safe_streaming and q.device.type == 'cuda':
         | 
| 420 | 
             
                                with torch.autocast(device_type=q.device.type, dtype=torch.float32):
         | 
| 421 | 
            +
                                    pre_w = torch.einsum(f"{query_layout},{key_layout}-> b h t k", q, k)
         | 
| 422 | 
             
                            else:
         | 
| 423 | 
            +
                                pre_w = torch.einsum(f"{query_layout},{key_layout}-> b h t k", q, k)
         | 
| 424 | 
             
                            if attn_mask is not None:
         | 
| 425 | 
             
                                pre_w = pre_w + attn_mask
         | 
| 426 | 
             
                            w = torch.softmax(pre_w, dim=-1)
         | 
| 427 | 
             
                            w = F.dropout(w, self.dropout, training=self.training).to(v)
         | 
| 428 | 
            +
                            # Key and value have the same format.
         | 
| 429 | 
            +
                            x = torch.einsum(f"b h t k, {key_layout} -> {layout}", w, v)
         | 
| 430 | 
             
                        x = x.to(dtype)
         | 
| 431 | 
            +
                        x = rearrange(x, f"{layout} -> b t (h d)", h=self.num_heads)
         | 
| 432 | 
             
                        x = self.out_proj(x)
         | 
| 433 | 
             
                    else:
         | 
| 434 | 
             
                        key, value = self._complete_kv(key, value)
         | 
    	
        tests/models/test_musicgen.py
    CHANGED
    
    | @@ -13,7 +13,7 @@ from audiocraft.models import MusicGen | |
| 13 | 
             
            class TestSEANetModel:
         | 
| 14 | 
             
                def get_musicgen(self):
         | 
| 15 | 
             
                    mg = MusicGen.get_pretrained(name='debug', device='cpu')
         | 
| 16 | 
            -
                    mg.set_generation_params(duration=2.0)
         | 
| 17 | 
             
                    return mg
         | 
| 18 |  | 
| 19 | 
             
                def test_base(self):
         | 
| @@ -48,3 +48,11 @@ class TestSEANetModel: | |
| 48 | 
             
                    wav = mg.generate(
         | 
| 49 | 
             
                        ['youpi', 'lapin dort'])
         | 
| 50 | 
             
                    assert list(wav.shape) == [2, 1, 64000]
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 13 | 
             
            class TestSEANetModel:
         | 
| 14 | 
             
                def get_musicgen(self):
         | 
| 15 | 
             
                    mg = MusicGen.get_pretrained(name='debug', device='cpu')
         | 
| 16 | 
            +
                    mg.set_generation_params(duration=2.0, extend_stride=2.)
         | 
| 17 | 
             
                    return mg
         | 
| 18 |  | 
| 19 | 
             
                def test_base(self):
         | 
|  | |
| 48 | 
             
                    wav = mg.generate(
         | 
| 49 | 
             
                        ['youpi', 'lapin dort'])
         | 
| 50 | 
             
                    assert list(wav.shape) == [2, 1, 64000]
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                def test_generate_long(self):
         | 
| 53 | 
            +
                    mg = self.get_musicgen()
         | 
| 54 | 
            +
                    mg.max_duration = 3.
         | 
| 55 | 
            +
                    mg.set_generation_params(duration=4., extend_stride=2.)
         | 
| 56 | 
            +
                    wav = mg.generate(
         | 
| 57 | 
            +
                        ['youpi', 'lapin dort'])
         | 
| 58 | 
            +
                    assert list(wav.shape) == [2, 1, 32000 * 4]
         | 
    	
        tests/modules/test_rope.py
    CHANGED
    
    | @@ -7,10 +7,11 @@ | |
| 7 | 
             
            import torch
         | 
| 8 |  | 
| 9 | 
             
            from audiocraft.modules.rope import RotaryEmbedding
         | 
| 10 | 
            -
            from audiocraft.modules.transformer import StreamingTransformer
         | 
| 11 |  | 
| 12 |  | 
| 13 | 
             
            def test_rope():
         | 
|  | |
| 14 | 
             
                B, T, H, C = 8, 75, 16, 128
         | 
| 15 |  | 
| 16 | 
             
                rope = RotaryEmbedding(dim=C)
         | 
| @@ -23,6 +24,7 @@ def test_rope(): | |
| 23 |  | 
| 24 |  | 
| 25 | 
             
            def test_rope_io_dtypes():
         | 
|  | |
| 26 | 
             
                B, T, H, C = 8, 75, 16, 128
         | 
| 27 |  | 
| 28 | 
             
                rope_32 = RotaryEmbedding(dim=C, dtype=torch.float32)
         | 
| @@ -46,6 +48,7 @@ def test_rope_io_dtypes(): | |
| 46 |  | 
| 47 |  | 
| 48 | 
             
            def test_transformer_with_rope():
         | 
|  | |
| 49 | 
             
                torch.manual_seed(1234)
         | 
| 50 | 
             
                for pos in ['rope', 'sin_rope']:
         | 
| 51 | 
             
                    tr = StreamingTransformer(
         | 
| @@ -61,6 +64,7 @@ def test_transformer_with_rope(): | |
| 61 |  | 
| 62 | 
             
            @torch.no_grad()
         | 
| 63 | 
             
            def test_rope_streaming():
         | 
|  | |
| 64 | 
             
                torch.manual_seed(1234)
         | 
| 65 | 
             
                tr = StreamingTransformer(
         | 
| 66 | 
             
                    16, 4, 2, causal=True, dropout=0.,
         | 
| @@ -88,6 +92,7 @@ def test_rope_streaming(): | |
| 88 |  | 
| 89 | 
             
            @torch.no_grad()
         | 
| 90 | 
             
            def test_rope_streaming_past_context():
         | 
|  | |
| 91 | 
             
                torch.manual_seed(1234)
         | 
| 92 |  | 
| 93 | 
             
                for context in [None, 10]:
         | 
| @@ -117,6 +122,7 @@ def test_rope_streaming_past_context(): | |
| 117 |  | 
| 118 |  | 
| 119 | 
             
            def test_rope_memory_efficient():
         | 
|  | |
| 120 | 
             
                torch.manual_seed(1234)
         | 
| 121 | 
             
                tr = StreamingTransformer(
         | 
| 122 | 
             
                    16, 4, 2, custom=True, dropout=0., layer_scale=0.1,
         | 
| @@ -137,6 +143,7 @@ def test_rope_memory_efficient(): | |
| 137 |  | 
| 138 |  | 
| 139 | 
             
            def test_rope_with_xpos():
         | 
|  | |
| 140 | 
             
                B, T, H, C = 8, 75, 16, 128
         | 
| 141 |  | 
| 142 | 
             
                rope = RotaryEmbedding(dim=C, xpos=True)
         | 
| @@ -149,6 +156,7 @@ def test_rope_with_xpos(): | |
| 149 |  | 
| 150 |  | 
| 151 | 
             
            def test_positional_scale():
         | 
|  | |
| 152 | 
             
                B, T, H, C = 8, 75, 16, 128
         | 
| 153 |  | 
| 154 | 
             
                rope = RotaryEmbedding(dim=C, xpos=True, scale=0.0)
         | 
|  | |
| 7 | 
             
            import torch
         | 
| 8 |  | 
| 9 | 
             
            from audiocraft.modules.rope import RotaryEmbedding
         | 
| 10 | 
            +
            from audiocraft.modules.transformer import StreamingTransformer, set_efficient_attention_backend
         | 
| 11 |  | 
| 12 |  | 
| 13 | 
             
            def test_rope():
         | 
| 14 | 
            +
                set_efficient_attention_backend('xformers')
         | 
| 15 | 
             
                B, T, H, C = 8, 75, 16, 128
         | 
| 16 |  | 
| 17 | 
             
                rope = RotaryEmbedding(dim=C)
         | 
|  | |
| 24 |  | 
| 25 |  | 
| 26 | 
             
            def test_rope_io_dtypes():
         | 
| 27 | 
            +
                set_efficient_attention_backend('xformers')
         | 
| 28 | 
             
                B, T, H, C = 8, 75, 16, 128
         | 
| 29 |  | 
| 30 | 
             
                rope_32 = RotaryEmbedding(dim=C, dtype=torch.float32)
         | 
|  | |
| 48 |  | 
| 49 |  | 
| 50 | 
             
            def test_transformer_with_rope():
         | 
| 51 | 
            +
                set_efficient_attention_backend('xformers')
         | 
| 52 | 
             
                torch.manual_seed(1234)
         | 
| 53 | 
             
                for pos in ['rope', 'sin_rope']:
         | 
| 54 | 
             
                    tr = StreamingTransformer(
         | 
|  | |
| 64 |  | 
| 65 | 
             
            @torch.no_grad()
         | 
| 66 | 
             
            def test_rope_streaming():
         | 
| 67 | 
            +
                set_efficient_attention_backend('xformers')
         | 
| 68 | 
             
                torch.manual_seed(1234)
         | 
| 69 | 
             
                tr = StreamingTransformer(
         | 
| 70 | 
             
                    16, 4, 2, causal=True, dropout=0.,
         | 
|  | |
| 92 |  | 
| 93 | 
             
            @torch.no_grad()
         | 
| 94 | 
             
            def test_rope_streaming_past_context():
         | 
| 95 | 
            +
                set_efficient_attention_backend('xformers')
         | 
| 96 | 
             
                torch.manual_seed(1234)
         | 
| 97 |  | 
| 98 | 
             
                for context in [None, 10]:
         | 
|  | |
| 122 |  | 
| 123 |  | 
| 124 | 
             
            def test_rope_memory_efficient():
         | 
| 125 | 
            +
                set_efficient_attention_backend('xformers')
         | 
| 126 | 
             
                torch.manual_seed(1234)
         | 
| 127 | 
             
                tr = StreamingTransformer(
         | 
| 128 | 
             
                    16, 4, 2, custom=True, dropout=0., layer_scale=0.1,
         | 
|  | |
| 143 |  | 
| 144 |  | 
| 145 | 
             
            def test_rope_with_xpos():
         | 
| 146 | 
            +
                set_efficient_attention_backend('xformers')
         | 
| 147 | 
             
                B, T, H, C = 8, 75, 16, 128
         | 
| 148 |  | 
| 149 | 
             
                rope = RotaryEmbedding(dim=C, xpos=True)
         | 
|  | |
| 156 |  | 
| 157 |  | 
| 158 | 
             
            def test_positional_scale():
         | 
| 159 | 
            +
                set_efficient_attention_backend('xformers')
         | 
| 160 | 
             
                B, T, H, C = 8, 75, 16, 128
         | 
| 161 |  | 
| 162 | 
             
                rope = RotaryEmbedding(dim=C, xpos=True, scale=0.0)
         | 
    	
        tests/modules/test_transformer.py
    CHANGED
    
    | @@ -9,7 +9,8 @@ from itertools import product | |
| 9 | 
             
            import pytest
         | 
| 10 | 
             
            import torch
         | 
| 11 |  | 
| 12 | 
            -
            from audiocraft.modules.transformer import  | 
|  | |
| 13 |  | 
| 14 |  | 
| 15 | 
             
            def test_transformer_causal_streaming():
         | 
| @@ -86,19 +87,22 @@ def test_streaming_api(): | |
| 86 |  | 
| 87 | 
             
            def test_memory_efficient():
         | 
| 88 | 
             
                torch.manual_seed(1234)
         | 
| 89 | 
            -
                 | 
| 90 | 
            -
                     | 
| 91 | 
            -
                tr_mem_efficient = StreamingTransformer(
         | 
| 92 | 
            -
                    16, 4, 2, dropout=0., memory_efficient=True, layer_scale=0.1)
         | 
| 93 | 
            -
                tr_mem_efficient.load_state_dict(tr.state_dict())
         | 
| 94 | 
            -
                tr.eval()
         | 
| 95 | 
            -
                steps = 12
         | 
| 96 | 
            -
                x = torch.randn(3, steps, 16)
         | 
| 97 |  | 
| 98 | 
            -
             | 
| 99 | 
            -
             | 
| 100 | 
            -
                     | 
| 101 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 102 |  | 
| 103 |  | 
| 104 | 
             
            def test_attention_as_float32():
         | 
| @@ -129,30 +133,32 @@ def test_attention_as_float32(): | |
| 129 | 
             
            @torch.no_grad()
         | 
| 130 | 
             
            def test_streaming_memory_efficient():
         | 
| 131 | 
             
                torch.manual_seed(1234)
         | 
| 132 | 
            -
                 | 
| 133 | 
            -
             | 
| 134 | 
            -
                    16, 4, 2, dropout=0.,  | 
| 135 | 
            -
             | 
| 136 | 
            -
             | 
| 137 | 
            -
             | 
| 138 | 
            -
             | 
| 139 | 
            -
             | 
|  | |
|  | |
| 140 |  | 
| 141 | 
            -
             | 
| 142 |  | 
| 143 | 
            -
             | 
| 144 | 
            -
             | 
| 145 | 
            -
             | 
| 146 | 
            -
             | 
| 147 |  | 
| 148 | 
            -
             | 
| 149 | 
            -
             | 
| 150 | 
            -
             | 
| 151 | 
            -
             | 
| 152 |  | 
| 153 | 
            -
             | 
| 154 | 
            -
             | 
| 155 | 
            -
             | 
| 156 |  | 
| 157 |  | 
| 158 | 
             
            def test_cross_attention():
         | 
| @@ -204,7 +210,7 @@ def test_cross_attention_compat(): | |
| 204 |  | 
| 205 | 
             
                y = cross_attn(queries, keys, values)[0]
         | 
| 206 | 
             
                y_ref = ref_attn(queries, keys, values)[0]
         | 
| 207 | 
            -
                assert torch.allclose(y, y_ref, atol=1e-7)
         | 
| 208 |  | 
| 209 | 
             
                # Now let's check that streaming is working properly.
         | 
| 210 | 
             
                with cross_attn.streaming():
         | 
|  | |
| 9 | 
             
            import pytest
         | 
| 10 | 
             
            import torch
         | 
| 11 |  | 
| 12 | 
            +
            from audiocraft.modules.transformer import (
         | 
| 13 | 
            +
                StreamingMultiheadAttention, StreamingTransformer, set_efficient_attention_backend)
         | 
| 14 |  | 
| 15 |  | 
| 16 | 
             
            def test_transformer_causal_streaming():
         | 
|  | |
| 87 |  | 
| 88 | 
             
            def test_memory_efficient():
         | 
| 89 | 
             
                torch.manual_seed(1234)
         | 
| 90 | 
            +
                for backend in ['torch', 'xformers']:
         | 
| 91 | 
            +
                    set_efficient_attention_backend(backend)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 92 |  | 
| 93 | 
            +
                    tr = StreamingTransformer(
         | 
| 94 | 
            +
                        16, 4, 2, custom=True, dropout=0., layer_scale=0.1)
         | 
| 95 | 
            +
                    tr_mem_efficient = StreamingTransformer(
         | 
| 96 | 
            +
                        16, 4, 2, dropout=0., memory_efficient=True, layer_scale=0.1)
         | 
| 97 | 
            +
                    tr_mem_efficient.load_state_dict(tr.state_dict())
         | 
| 98 | 
            +
                    tr.eval()
         | 
| 99 | 
            +
                    steps = 12
         | 
| 100 | 
            +
                    x = torch.randn(3, steps, 16)
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                    with torch.no_grad():
         | 
| 103 | 
            +
                        y = tr(x)
         | 
| 104 | 
            +
                        y2 = tr_mem_efficient(x)
         | 
| 105 | 
            +
                        assert torch.allclose(y, y2), ((y - y2).norm(), backend)
         | 
| 106 |  | 
| 107 |  | 
| 108 | 
             
            def test_attention_as_float32():
         | 
|  | |
| 133 | 
             
            @torch.no_grad()
         | 
| 134 | 
             
            def test_streaming_memory_efficient():
         | 
| 135 | 
             
                torch.manual_seed(1234)
         | 
| 136 | 
            +
                for backend in ['torch', 'xformers']:
         | 
| 137 | 
            +
                    set_efficient_attention_backend(backend)
         | 
| 138 | 
            +
                    tr = StreamingTransformer(16, 4, 2, causal=True, dropout=0., custom=True)
         | 
| 139 | 
            +
                    tr_mem_efficient = StreamingTransformer(
         | 
| 140 | 
            +
                        16, 4, 2, dropout=0., memory_efficient=True, causal=True)
         | 
| 141 | 
            +
                    tr.load_state_dict(tr_mem_efficient.state_dict())
         | 
| 142 | 
            +
                    tr.eval()
         | 
| 143 | 
            +
                    tr_mem_efficient.eval()
         | 
| 144 | 
            +
                    steps = 12
         | 
| 145 | 
            +
                    x = torch.randn(3, steps, 16)
         | 
| 146 |  | 
| 147 | 
            +
                    ref = tr(x)
         | 
| 148 |  | 
| 149 | 
            +
                    with tr_mem_efficient.streaming():
         | 
| 150 | 
            +
                        outs = []
         | 
| 151 | 
            +
                        # frame_sizes = [2] + [1] * (steps - 2)
         | 
| 152 | 
            +
                        frame_sizes = [1] * steps
         | 
| 153 |  | 
| 154 | 
            +
                        for frame_size in frame_sizes:
         | 
| 155 | 
            +
                            frame = x[:, :frame_size]
         | 
| 156 | 
            +
                            x = x[:, frame_size:]
         | 
| 157 | 
            +
                            outs.append(tr_mem_efficient(frame))
         | 
| 158 |  | 
| 159 | 
            +
                    out = torch.cat(outs, dim=1)
         | 
| 160 | 
            +
                    delta = torch.norm(out - ref) / torch.norm(out)
         | 
| 161 | 
            +
                    assert delta < 1e-6, delta
         | 
| 162 |  | 
| 163 |  | 
| 164 | 
             
            def test_cross_attention():
         | 
|  | |
| 210 |  | 
| 211 | 
             
                y = cross_attn(queries, keys, values)[0]
         | 
| 212 | 
             
                y_ref = ref_attn(queries, keys, values)[0]
         | 
| 213 | 
            +
                assert torch.allclose(y, y_ref, atol=1e-7), (y - y_ref).norm() / y_ref.norm()
         | 
| 214 |  | 
| 215 | 
             
                # Now let's check that streaming is working properly.
         | 
| 216 | 
             
                with cross_attn.streaming():
         | 
 
			
