import streamlit as st from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import numpy as np # Load tokenizer and model from Hugging Face Hub MODEL_NAME = "briangilbert/working" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME) # Define labels id2label = {0: "NOT SCAM", 1: "SCAM"} # Streamlit UI st.title("💬 Fraud Detection in Text") st.write("Enter a dialogue and check if it's a **SCAM** or **NOT SCAM**.") # Text input user_input = st.text_area("Enter a message:") if st.button("Detect Fraud"): if user_input: # Tokenize input inputs = tokenizer(user_input, return_tensors="pt", truncation=True) # Get model prediction model.eval() with torch.no_grad(): outputs = model(**inputs) predicted_class = torch.argmax(outputs.logits).item() # Display result st.success(f"🚨 Prediction: **{id2label[predicted_class]}**") else: st.warning("Please enter a dialogue.")