briangilbert commited on
Commit
577d9b4
·
verified ·
1 Parent(s): 84fb6a1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+ import torch
4
+ import numpy as np
5
+
6
+ # Load tokenizer and model from Hugging Face Hub
7
+ MODEL_NAME = "briangilbert/working"
8
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
9
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
10
+
11
+ # Define labels
12
+ id2label = {0: "NOT SCAM", 1: "SCAM"}
13
+
14
+ # Streamlit UI
15
+ st.title("💬 Fraud Detection in Text")
16
+ st.write("Enter a dialogue and check if it's a **SCAM** or **NOT SCAM**.")
17
+
18
+ # Text input
19
+ user_input = st.text_area("Enter a message:")
20
+
21
+ if st.button("Detect Fraud"):
22
+ if user_input:
23
+ # Tokenize input
24
+ inputs = tokenizer(user_input, return_tensors="pt", truncation=True)
25
+
26
+ # Get model prediction
27
+ model.eval()
28
+ with torch.no_grad():
29
+ outputs = model(**inputs)
30
+ predicted_class = torch.argmax(outputs.logits).item()
31
+
32
+ # Display result
33
+ st.success(f"🚨 Prediction: **{id2label[predicted_class]}**")
34
+ else:
35
+ st.warning("Please enter a dialogue.")