Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load tokenizer and model from Hugging Face Hub
|
7 |
+
MODEL_NAME = "briangilbert/working"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
9 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
10 |
+
|
11 |
+
# Define labels
|
12 |
+
id2label = {0: "NOT SCAM", 1: "SCAM"}
|
13 |
+
|
14 |
+
# Streamlit UI
|
15 |
+
st.title("💬 Fraud Detection in Text")
|
16 |
+
st.write("Enter a dialogue and check if it's a **SCAM** or **NOT SCAM**.")
|
17 |
+
|
18 |
+
# Text input
|
19 |
+
user_input = st.text_area("Enter a message:")
|
20 |
+
|
21 |
+
if st.button("Detect Fraud"):
|
22 |
+
if user_input:
|
23 |
+
# Tokenize input
|
24 |
+
inputs = tokenizer(user_input, return_tensors="pt", truncation=True)
|
25 |
+
|
26 |
+
# Get model prediction
|
27 |
+
model.eval()
|
28 |
+
with torch.no_grad():
|
29 |
+
outputs = model(**inputs)
|
30 |
+
predicted_class = torch.argmax(outputs.logits).item()
|
31 |
+
|
32 |
+
# Display result
|
33 |
+
st.success(f"🚨 Prediction: **{id2label[predicted_class]}**")
|
34 |
+
else:
|
35 |
+
st.warning("Please enter a dialogue.")
|