Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -38,6 +38,27 @@ model_configs = {
|
|
38 |
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
39 |
}
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
encoder = 'vitl'
|
42 |
model = DepthAnythingV2(**model_configs[encoder])
|
43 |
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model")
|
@@ -45,27 +66,59 @@ state_dict = torch.load(filepath, map_location="cpu")
|
|
45 |
model.load_state_dict(state_dict)
|
46 |
model = model.to(DEVICE).eval()
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
import torch
|
49 |
from diffusers.utils import load_image
|
50 |
-
from
|
51 |
-
from
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
58 |
pipe.to("cuda")
|
59 |
|
60 |
-
mode_mapping = {
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
canny = CannyDetector()
|
64 |
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
|
65 |
|
66 |
torch.backends.cuda.matmul.allow_tf32 = True
|
67 |
-
pipe.vae.enable_tiling()
|
68 |
-
pipe.vae.enable_slicing()
|
69 |
pipe.enable_model_cpu_offload() # for saving memory
|
70 |
|
71 |
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
|
@@ -100,13 +153,8 @@ def convert_to_grayscale(image):
|
|
100 |
gray_image = convert_from_cv2_to_image(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))
|
101 |
return gray_image
|
102 |
|
103 |
-
def add_gaussian_noise(image, mean=0, sigma=10):
|
104 |
-
image = convert_from_image_to_cv2(image)
|
105 |
-
noise = np.random.normal(mean, sigma, image.shape)
|
106 |
-
noisy_image = convert_from_cv2_to_image(np.clip(image.astype(np.float32) + noise, 0, 255).astype(np.uint8))
|
107 |
-
return noisy_image
|
108 |
|
109 |
-
def
|
110 |
input_image = convert_from_image_to_cv2(input_image)
|
111 |
H, W, C = input_image.shape
|
112 |
H = float(H)
|
@@ -114,38 +162,32 @@ def tile(input_image, resolution=768):
|
|
114 |
k = float(resolution) / min(H, W)
|
115 |
H *= k
|
116 |
W *= k
|
117 |
-
H = int(np.round(H /
|
118 |
-
W = int(np.round(W /
|
119 |
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
|
120 |
img = convert_from_cv2_to_image(img)
|
121 |
return img
|
122 |
|
123 |
-
def
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
w, h = round(ratio*w), round(ratio*h)
|
132 |
-
ratio = max_side / max(h, w)
|
133 |
-
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
|
134 |
-
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
|
135 |
-
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
|
136 |
-
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
137 |
-
|
138 |
-
if pad_to_max_side:
|
139 |
-
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
|
140 |
-
offset_x = (max_side - w_resize_new) // 2
|
141 |
-
offset_y = (max_side - h_resize_new) // 2
|
142 |
-
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
|
143 |
-
input_image = Image.fromarray(res)
|
144 |
-
return input_image
|
145 |
|
146 |
@spaces.GPU(duration=180)
|
147 |
def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)):
|
148 |
-
|
149 |
control_mode_num = mode_mapping[control_mode]
|
150 |
|
151 |
if cond_in is None:
|
@@ -157,14 +199,12 @@ def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mo
|
|
157 |
control_image = extract_depth(image_in)
|
158 |
elif control_mode == "openpose":
|
159 |
control_image = extract_openpose(image_in)
|
160 |
-
elif control_mode == "
|
161 |
-
control_image =
|
162 |
-
elif control_mode == "
|
163 |
-
control_image = add_gaussian_noise(image_in)
|
164 |
-
elif control_mode == "gray":
|
165 |
control_image = convert_to_grayscale(image_in)
|
166 |
elif control_mode == "tile":
|
167 |
-
control_image = tile(image_in)
|
168 |
else:
|
169 |
control_image = resize_img(load_image(cond_in))
|
170 |
|
@@ -214,7 +254,7 @@ with gr.Blocks(css=css) as demo:
|
|
214 |
|
215 |
with gr.Accordion("Controlnet"):
|
216 |
control_mode = gr.Radio(
|
217 |
-
["
|
218 |
info="select the control mode, one for all"
|
219 |
)
|
220 |
|
@@ -223,7 +263,7 @@ with gr.Blocks(css=css) as demo:
|
|
223 |
minimum=0,
|
224 |
maximum=1.0,
|
225 |
step=0.05,
|
226 |
-
value=0.
|
227 |
)
|
228 |
|
229 |
seed = gr.Slider(
|
|
|
38 |
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
39 |
}
|
40 |
|
41 |
+
ratios_map = {
|
42 |
+
0.5:{"width":704,"height":1408},
|
43 |
+
0.57:{"width":768,"height":1344},
|
44 |
+
0.68:{"width":832,"height":1216},
|
45 |
+
0.72:{"width":832,"height":1152},
|
46 |
+
0.78:{"width":896,"height":1152},
|
47 |
+
0.82:{"width":896,"height":1088},
|
48 |
+
0.88:{"width":960,"height":1088},
|
49 |
+
0.94:{"width":960,"height":1024},
|
50 |
+
1.00:{"width":1024,"height":1024},
|
51 |
+
1.13:{"width":1088,"height":960},
|
52 |
+
1.21:{"width":1088,"height":896},
|
53 |
+
1.29:{"width":1152,"height":896},
|
54 |
+
1.38:{"width":1152,"height":832},
|
55 |
+
1.46:{"width":1216,"height":832},
|
56 |
+
1.67:{"width":1280,"height":768},
|
57 |
+
1.75:{"width":1344,"height":768},
|
58 |
+
2.00:{"width":1408,"height":704}
|
59 |
+
}
|
60 |
+
ratios = np.array(list(ratios_map.keys()))
|
61 |
+
|
62 |
encoder = 'vitl'
|
63 |
model = DepthAnythingV2(**model_configs[encoder])
|
64 |
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model")
|
|
|
66 |
model.load_state_dict(state_dict)
|
67 |
model = model.to(DEVICE).eval()
|
68 |
|
69 |
+
from huggingface_hub import hf_hub_download
|
70 |
+
import os
|
71 |
+
|
72 |
+
try:
|
73 |
+
local_dir = os.path.dirname(__file__)
|
74 |
+
except:
|
75 |
+
local_dir = '.'
|
76 |
+
|
77 |
+
hf_hub_download(repo_id="briaai/BRIA-4B-Adapt", filename='pipeline_bria.py', local_dir=local_dir)
|
78 |
+
hf_hub_download(repo_id="briaai/BRIA-4B-Adapt", filename='transformer_bria.py', local_dir=local_dir)
|
79 |
+
hf_hub_download(repo_id="briaai/BRIA-4B-Adapt", filename='bria_utils.py', local_dir=local_dir)
|
80 |
+
hf_hub_download(repo_id="briaai/BRIA-3.0-ControlNet-Union", filename='pipeline_bria_controlnet.py', local_dir=local_dir)
|
81 |
+
hf_hub_download(repo_id="briaai/BRIA-3.0-ControlNet-Union", filename='controlnet_bria.py', local_dir=local_dir)
|
82 |
+
|
83 |
+
|
84 |
import torch
|
85 |
from diffusers.utils import load_image
|
86 |
+
from controlnet_bria import BriaControlNetModel, BriaMultiControlNetModel
|
87 |
+
from pipeline_bria_controlnet import BriaControlNetPipeline
|
88 |
+
import PIL.Image as Image
|
89 |
+
|
90 |
+
base_model = 'briaai/BRIA-4B-Adapt'
|
91 |
+
controlnet_model = 'briaai/BRIA-3.0-ControlNet-Union'
|
92 |
+
|
93 |
+
controlnet = BriaControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
94 |
+
controlnet = BriaMultiControlNetModel([controlnet])
|
95 |
+
|
96 |
+
pipe = BriaControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16, trust_remote_code=True)
|
97 |
pipe.to("cuda")
|
98 |
|
99 |
+
mode_mapping = {
|
100 |
+
"depth": 0,
|
101 |
+
"canny": 1,
|
102 |
+
"colorgrid": 2,
|
103 |
+
"recolor": 3,
|
104 |
+
"tile": 4,
|
105 |
+
"pose": 5,
|
106 |
+
}
|
107 |
+
strength_mapping = {
|
108 |
+
"depth": 1.0,
|
109 |
+
"canny": 1.0,
|
110 |
+
"colorgrid": 1.0,
|
111 |
+
"recolor": 1.0,
|
112 |
+
"tile": 1.0,
|
113 |
+
"pose": 1.0,
|
114 |
+
}
|
115 |
|
116 |
canny = CannyDetector()
|
117 |
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
|
118 |
|
119 |
torch.backends.cuda.matmul.allow_tf32 = True
|
120 |
+
# pipe.vae.enable_tiling()
|
121 |
+
# pipe.vae.enable_slicing()
|
122 |
pipe.enable_model_cpu_offload() # for saving memory
|
123 |
|
124 |
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
|
|
|
153 |
gray_image = convert_from_cv2_to_image(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))
|
154 |
return gray_image
|
155 |
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
def tile_old(input_image, resolution=768):
|
158 |
input_image = convert_from_image_to_cv2(input_image)
|
159 |
H, W, C = input_image.shape
|
160 |
H = float(H)
|
|
|
162 |
k = float(resolution) / min(H, W)
|
163 |
H *= k
|
164 |
W *= k
|
165 |
+
H = int(np.round(H / 16.0)) * 16
|
166 |
+
W = int(np.round(W / 16.0)) * 16
|
167 |
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
|
168 |
img = convert_from_cv2_to_image(img)
|
169 |
return img
|
170 |
|
171 |
+
def tile(downscale_factor, input_image):
|
172 |
+
control_image = input_image.resize((input_image.size[0] // downscale_factor, input_image.size[1] // downscale_factor)).resize(input_image.size, Image.NEAREST)
|
173 |
+
|
174 |
+
def get_size(init_image):
|
175 |
+
w,h=init_image.size
|
176 |
+
curr_ratio = w/h
|
177 |
+
ind = np.argmin(np.abs(curr_ratio-ratios))
|
178 |
+
ratio = ratios[ind]
|
179 |
+
chosen_ratio = ratios_map[ratio]
|
180 |
+
w,h = chosen_ratio['width'], chosen_ratio['height']
|
181 |
+
return w,h
|
182 |
|
183 |
+
def resize_image(image):
|
184 |
+
image = image.convert('RGB')
|
185 |
+
w,h = get_size(image)
|
186 |
+
resized_image = image.resize((w, h))
|
187 |
+
return resized_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
@spaces.GPU(duration=180)
|
190 |
def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)):
|
|
|
191 |
control_mode_num = mode_mapping[control_mode]
|
192 |
|
193 |
if cond_in is None:
|
|
|
199 |
control_image = extract_depth(image_in)
|
200 |
elif control_mode == "openpose":
|
201 |
control_image = extract_openpose(image_in)
|
202 |
+
elif control_mode == "colorgrid":
|
203 |
+
control_image = tile(64, image_in)
|
204 |
+
elif control_mode == "recolor":
|
|
|
|
|
205 |
control_image = convert_to_grayscale(image_in)
|
206 |
elif control_mode == "tile":
|
207 |
+
control_image = tile(16, image_in)
|
208 |
else:
|
209 |
control_image = resize_img(load_image(cond_in))
|
210 |
|
|
|
254 |
|
255 |
with gr.Accordion("Controlnet"):
|
256 |
control_mode = gr.Radio(
|
257 |
+
["depth", "canny", "colorgrid", "recolor", "tile", "pose"], label="Mode", value="gray",
|
258 |
info="select the control mode, one for all"
|
259 |
)
|
260 |
|
|
|
263 |
minimum=0,
|
264 |
maximum=1.0,
|
265 |
step=0.05,
|
266 |
+
value=0.9,
|
267 |
)
|
268 |
|
269 |
seed = gr.Slider(
|