Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, Dict, List, Optional, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import PeftAdapterMixin, FromOriginalModelMixin | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import AdaLayerNormContinuous | |
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.models.embeddings import TimestepEmbedding, get_timestep_embedding | |
from diffusers.models.transformers.transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock | |
# Support different diffusers versions | |
try: | |
from diffusers.models.embeddings import FluxPosEmbed as EmbedND | |
except: | |
from diffusers.models.transformers.transformer_flux import rope | |
class EmbedND(nn.Module): | |
def __init__(self, theta: int, axes_dim: List[int]): | |
super().__init__() | |
self.theta = theta | |
self.axes_dim = axes_dim | |
def forward(self, ids: torch.Tensor) -> torch.Tensor: | |
n_axes = ids.shape[-1] | |
emb = torch.cat( | |
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], | |
dim=-3, | |
) | |
return emb.unsqueeze(1) | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class Timesteps(nn.Module): | |
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1,max_period=10000): | |
super().__init__() | |
self.num_channels = num_channels | |
self.flip_sin_to_cos = flip_sin_to_cos | |
self.downscale_freq_shift = downscale_freq_shift | |
self.scale = scale | |
self.max_period=max_period | |
def forward(self, timesteps): | |
t_emb = get_timestep_embedding( | |
timesteps, | |
self.num_channels, | |
flip_sin_to_cos=self.flip_sin_to_cos, | |
downscale_freq_shift=self.downscale_freq_shift, | |
scale=self.scale, | |
max_period=self.max_period | |
) | |
return t_emb | |
class TimestepProjEmbeddings(nn.Module): | |
def __init__(self, embedding_dim, max_period): | |
super().__init__() | |
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0,max_period=max_period) | |
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) | |
def forward(self, timestep, dtype): | |
timesteps_proj = self.time_proj(timestep) | |
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=dtype)) # (N, D) | |
return timesteps_emb | |
""" | |
Based on FluxPipeline with several changes: | |
- no pooled embeddings | |
- We use zero padding for prompts | |
- No guidance embedding since this is not a distilled version | |
""" | |
class BriaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): | |
""" | |
The Transformer model introduced in Flux. | |
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ | |
Parameters: | |
patch_size (`int`): Patch size to turn the input data into small patches. | |
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. | |
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use. | |
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use. | |
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. | |
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. | |
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. | |
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
patch_size: int = 1, | |
in_channels: int = 64, | |
num_layers: int = 19, | |
num_single_layers: int = 38, | |
attention_head_dim: int = 128, | |
num_attention_heads: int = 24, | |
joint_attention_dim: int = 4096, | |
pooled_projection_dim: int = None, | |
guidance_embeds: bool = False, | |
axes_dims_rope: List[int] = [16, 56, 56], | |
rope_theta = 10000, | |
max_period = 10000 | |
): | |
super().__init__() | |
self.out_channels = in_channels | |
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim | |
self.pos_embed = EmbedND(theta=rope_theta, axes_dim=axes_dims_rope) | |
self.time_embed = TimestepProjEmbeddings( | |
embedding_dim=self.inner_dim,max_period=max_period | |
) | |
# if pooled_projection_dim: | |
# self.pooled_text_embed = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim=self.inner_dim, act_fn="silu") | |
if guidance_embeds: | |
self.guidance_embed = TimestepProjEmbeddings(embedding_dim=self.inner_dim) | |
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim) | |
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
FluxTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
attention_head_dim=self.config.attention_head_dim, | |
) | |
for i in range(self.config.num_layers) | |
] | |
) | |
self.single_transformer_blocks = nn.ModuleList( | |
[ | |
FluxSingleTransformerBlock( | |
dim=self.inner_dim, | |
num_attention_heads=self.config.num_attention_heads, | |
attention_head_dim=self.config.attention_head_dim, | |
) | |
for i in range(self.config.num_single_layers) | |
] | |
) | |
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) | |
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) | |
self.gradient_checkpointing = False | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor = None, | |
pooled_projections: torch.Tensor = None, | |
timestep: torch.LongTensor = None, | |
img_ids: torch.Tensor = None, | |
txt_ids: torch.Tensor = None, | |
guidance: torch.Tensor = None, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
return_dict: bool = True, | |
controlnet_block_samples = None, | |
controlnet_single_block_samples=None, | |
) -> Union[torch.FloatTensor, Transformer2DModelOutput]: | |
""" | |
The [`FluxTransformer2DModel`] forward method. | |
Args: | |
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): | |
Input `hidden_states`. | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): | |
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | |
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected | |
from the embeddings of input conditions. | |
timestep ( `torch.LongTensor`): | |
Used to indicate denoising step. | |
block_controlnet_hidden_states: (`list` of `torch.Tensor`): | |
A list of tensors that if specified are added to the residuals of transformer blocks. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
if joint_attention_kwargs is not None: | |
joint_attention_kwargs = joint_attention_kwargs.copy() | |
lora_scale = joint_attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
# weight the lora layers by setting `lora_scale` for each PEFT layer | |
scale_lora_layers(self, lora_scale) | |
else: | |
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | |
) | |
hidden_states = self.x_embedder(hidden_states) | |
timestep = timestep.to(hidden_states.dtype) | |
if guidance is not None: | |
guidance = guidance.to(hidden_states.dtype) | |
else: | |
guidance = None | |
# temb = ( | |
# self.time_text_embed(timestep, pooled_projections) | |
# if guidance is None | |
# else self.time_text_embed(timestep, guidance, pooled_projections) | |
# ) | |
temb = self.time_embed(timestep,dtype=hidden_states.dtype) | |
# if pooled_projections: | |
# temb+=self.pooled_text_embed(pooled_projections) | |
if guidance: | |
temb+=self.guidance_embed(guidance,dtype=hidden_states.dtype) | |
encoder_hidden_states = self.context_embedder(encoder_hidden_states) | |
if len(txt_ids.shape)==2: | |
ids = torch.cat((txt_ids, img_ids), dim=0) | |
else: | |
ids = torch.cat((txt_ids, img_ids), dim=1) | |
image_rotary_emb = self.pos_embed(ids) | |
for index_block, block in enumerate(self.transformer_blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
encoder_hidden_states, | |
temb, | |
image_rotary_emb, | |
**ckpt_kwargs, | |
) | |
else: | |
encoder_hidden_states, hidden_states = block( | |
hidden_states=hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
) | |
# controlnet residual | |
if controlnet_block_samples is not None: | |
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) | |
interval_control = int(np.ceil(interval_control)) | |
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] | |
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
for index_block, block in enumerate(self.single_transformer_blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
temb, | |
image_rotary_emb, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = block( | |
hidden_states=hidden_states, | |
temb=temb, | |
image_rotary_emb=image_rotary_emb, | |
) | |
# controlnet residual | |
if controlnet_single_block_samples is not None: | |
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) | |
interval_control = int(np.ceil(interval_control)) | |
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( | |
hidden_states[:, encoder_hidden_states.shape[1] :, ...] | |
+ controlnet_single_block_samples[index_block // interval_control] | |
) | |
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] | |
hidden_states = self.norm_out(hidden_states, temb) | |
output = self.proj_out(hidden_states) | |
if USE_PEFT_BACKEND: | |
# remove `lora_scale` from each PEFT layer | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |