Spaces:
Runtime error
Runtime error
| # Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import torch | |
| from transformers import ( | |
| T5EncoderModel, | |
| T5TokenizerFast, | |
| ) | |
| from diffusers.image_processor import PipelineImageInput | |
| from diffusers import AutoencoderKL # Waiting for diffusers udpdate | |
| from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils import logging | |
| from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput | |
| from diffusers.pipelines.flux.pipeline_flux import retrieve_timesteps | |
| from controlnet_bria import BriaControlNetModel, BriaMultiControlNetModel | |
| from pipeline_bria import BriaPipeline | |
| from transformer_bria import BriaTransformer2DModel | |
| from bria_utils import get_original_sigmas | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class BriaControlNetPipeline(BriaPipeline): | |
| r""" | |
| Args: | |
| transformer ([`SD3Transformer2DModel`]): | |
| Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. | |
| scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`T5EncoderModel`]): | |
| Frozen text-encoder. Stable Diffusion 3 uses | |
| [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the | |
| [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. | |
| tokenizer (`T5TokenizerFast`): | |
| Tokenizer of class | |
| [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). | |
| """ | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder->transformer->vae" | |
| _optional_components = [] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"] | |
| def __init__( # EYAL - removed clip text encoder + tokenizer | |
| self, | |
| transformer: BriaTransformer2DModel, | |
| scheduler: Union[FlowMatchEulerDiscreteScheduler, KarrasDiffusionSchedulers], | |
| vae: AutoencoderKL, | |
| text_encoder: T5EncoderModel, | |
| tokenizer: T5TokenizerFast, | |
| controlnet: BriaControlNetModel, | |
| ): | |
| super().__init__( | |
| transformer=transformer, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer | |
| ) | |
| self.register_modules(controlnet=controlnet) | |
| def prepare_image( | |
| self, | |
| image, | |
| width, | |
| height, | |
| batch_size, | |
| num_images_per_prompt, | |
| device, | |
| dtype, | |
| do_classifier_free_guidance=False, | |
| guess_mode=False, | |
| ): | |
| if isinstance(image, torch.Tensor): | |
| pass | |
| else: | |
| image = self.image_processor.preprocess(image, height=height, width=width) | |
| image_batch_size = image.shape[0] | |
| if image_batch_size == 1: | |
| repeat_by = batch_size | |
| else: | |
| # image batch size is the same as prompt batch size | |
| repeat_by = num_images_per_prompt | |
| image = image.repeat_interleave(repeat_by, dim=0) | |
| image = image.to(device=device, dtype=dtype) | |
| if do_classifier_free_guidance and not guess_mode: | |
| image = torch.cat([image] * 2) | |
| return image | |
| def prepare_control(self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode): | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| control_image = self.prepare_image( | |
| image=control_image, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| dtype=self.vae.dtype, | |
| ) | |
| height, width = control_image.shape[-2:] | |
| # vae encode | |
| control_image = self.vae.encode(control_image).latent_dist.sample() | |
| control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
| # pack | |
| height_control_image, width_control_image = control_image.shape[2:] | |
| control_image = self._pack_latents( | |
| control_image, | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height_control_image, | |
| width_control_image, | |
| ) | |
| # Here we ensure that `control_mode` has the same length as the control_image. | |
| if control_mode is not None: | |
| if not isinstance(control_mode, int): | |
| raise ValueError(" For `BriaControlNet`, `control_mode` should be an `int` or `None`") | |
| control_mode = torch.tensor(control_mode).to(device, dtype=torch.long) | |
| control_mode = control_mode.view(-1, 1).expand(control_image.shape[0], 1) | |
| return control_image, control_mode | |
| def prepare_multi_control(self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode): | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| control_images = [] | |
| for i, control_image_ in enumerate(control_image): | |
| control_image_ = self.prepare_image( | |
| image=control_image_, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| dtype=self.vae.dtype, | |
| ) | |
| height, width = control_image_.shape[-2:] | |
| # vae encode | |
| control_image_ = self.vae.encode(control_image_).latent_dist.sample() | |
| control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
| # pack | |
| height_control_image, width_control_image = control_image_.shape[2:] | |
| control_image_ = self._pack_latents( | |
| control_image_, | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height_control_image, | |
| width_control_image, | |
| ) | |
| control_images.append(control_image_) | |
| control_image = control_images | |
| # Here we ensure that `control_mode` has the same length as the control_image. | |
| if isinstance(control_mode, list) and len(control_mode) != len(control_image): | |
| raise ValueError( | |
| "For Multi-ControlNet, `control_mode` must be a list of the same " | |
| + " length as the number of controlnets (control images) specified" | |
| ) | |
| if not isinstance(control_mode, list): | |
| control_mode = [control_mode] * len(control_image) | |
| # set control mode | |
| control_modes = [] | |
| for cmode in control_mode: | |
| if cmode is None: | |
| cmode = -1 | |
| control_mode = torch.tensor(cmode).expand(control_images[0].shape[0]).to(device, dtype=torch.long) | |
| control_modes.append(control_mode) | |
| control_mode = control_modes | |
| return control_image, control_mode | |
| def get_controlnet_keep(self, timesteps, control_guidance_start, control_guidance_end): | |
| controlnet_keep = [] | |
| for i in range(len(timesteps)): | |
| keeps = [ | |
| 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | |
| for s, e in zip(control_guidance_start, control_guidance_end) | |
| ] | |
| controlnet_keep.append(keeps[0] if isinstance(self.controlnet, BriaControlNetModel) else keeps) | |
| return controlnet_keep | |
| def get_control_start_end(self, control_guidance_start, control_guidance_end): | |
| if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): | |
| control_guidance_start = len(control_guidance_end) * [control_guidance_start] | |
| elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): | |
| control_guidance_end = len(control_guidance_start) * [control_guidance_end] | |
| elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): | |
| mult = 1 # TODO - why is this 1? | |
| control_guidance_start, control_guidance_end = ( | |
| mult * [control_guidance_start], | |
| mult * [control_guidance_end], | |
| ) | |
| return control_guidance_start, control_guidance_end | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 30, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 3.5, | |
| control_guidance_start: Union[float, List[float]] = 0.0, | |
| control_guidance_end: Union[float, List[float]] = 1.0, | |
| control_image: Optional[PipelineImageInput] = None, | |
| control_mode: Optional[Union[int, List[int]]] = None, | |
| controlnet_conditioning_scale: Union[float, List[float]] = 1.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 128, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| guidance_scale (`float`, *optional*, defaults to 5.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | |
| of a plain tuple. | |
| joint_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a | |
| `tuple`. When returning a tuple, the first element is a list with the generated images. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| control_guidance_start, control_guidance_end = self.get_control_start_end( | |
| control_guidance_start=control_guidance_start, control_guidance_end=control_guidance_end | |
| ) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| lora_scale = self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| (prompt_embeds, negative_prompt_embeds, text_ids) = self.encode_prompt( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| # 3. Prepare control image | |
| if control_image is not None: | |
| if isinstance(self.controlnet, BriaControlNetModel): | |
| control_image, control_mode = self.prepare_control( | |
| control_image=control_image, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| control_mode=control_mode, | |
| ) | |
| elif isinstance(self.controlnet, BriaMultiControlNetModel): | |
| control_image, control_mode = self.prepare_multi_control( | |
| control_image=control_image, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| control_mode=control_mode, | |
| ) | |
| # 4. Prepare timesteps | |
| # Sample from training sigmas | |
| sigmas = get_original_sigmas( | |
| num_train_timesteps=self.scheduler.config.num_train_timesteps, num_inference_steps=num_inference_steps | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 # due to patch=2, we devide by 4 | |
| latents, latent_image_ids = self.prepare_latents( | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_channels_latents=num_channels_latents, | |
| height=height, | |
| width=width, | |
| dtype=prompt_embeds.dtype, | |
| device=device, | |
| generator=generator, | |
| latents=latents, | |
| ) | |
| # 6. Create tensor stating which controlnets to keep | |
| if control_image is not None: | |
| controlnet_keep = self.get_controlnet_keep( | |
| timesteps=timesteps, | |
| control_guidance_start=control_guidance_start, | |
| control_guidance_end=control_guidance_end, | |
| ) | |
| # EYAL - added the CFG loop | |
| # 7. Denoising loop | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| # if type(self.scheduler) != FlowMatchEulerDiscreteScheduler: | |
| if not isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler): | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latent_model_input.shape[0]) | |
| # Handling ControlNet | |
| if control_image is not None: | |
| if isinstance(controlnet_keep[i], list): | |
| if isinstance(controlnet_conditioning_scale, list): | |
| cond_scale = controlnet_conditioning_scale | |
| else: | |
| cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] | |
| else: | |
| controlnet_cond_scale = controlnet_conditioning_scale | |
| if isinstance(controlnet_cond_scale, list): | |
| controlnet_cond_scale = controlnet_cond_scale[0] | |
| cond_scale = controlnet_cond_scale * controlnet_keep[i] | |
| # controlnet | |
| controlnet_block_samples, controlnet_single_block_samples = self.controlnet( | |
| hidden_states=latents, | |
| controlnet_cond=control_image, | |
| controlnet_mode=control_mode, | |
| conditioning_scale=cond_scale, | |
| timestep=timestep, | |
| # guidance=guidance, | |
| # pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| ) | |
| else: | |
| controlnet_block_samples, controlnet_single_block_samples = None, None | |
| # This is predicts "v" from flow-matching | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep, | |
| encoder_hidden_states=prompt_embeds, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| controlnet_block_samples=controlnet_block_samples, | |
| controlnet_single_block_samples=controlnet_single_block_samples, | |
| )[0] | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) | |