Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import torch | |
from transformers import ( | |
T5EncoderModel, | |
T5TokenizerFast, | |
) | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers import AutoencoderKL # Waiting for diffusers udpdate | |
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import logging | |
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput | |
from diffusers.pipelines.flux.pipeline_flux import retrieve_timesteps | |
from controlnet_bria import BriaControlNetModel, BriaMultiControlNetModel | |
from pipeline_bria import BriaPipeline | |
from transformer_bria import BriaTransformer2DModel | |
from bria_utils import get_original_sigmas | |
XLA_AVAILABLE = False | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class BriaControlNetPipeline(BriaPipeline): | |
r""" | |
Args: | |
transformer ([`SD3Transformer2DModel`]): | |
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. | |
scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`T5EncoderModel`]): | |
Frozen text-encoder. Stable Diffusion 3 uses | |
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the | |
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. | |
tokenizer (`T5TokenizerFast`): | |
Tokenizer of class | |
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). | |
""" | |
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder->transformer->vae" | |
_optional_components = [] | |
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"] | |
def __init__( # EYAL - removed clip text encoder + tokenizer | |
self, | |
transformer: BriaTransformer2DModel, | |
scheduler: Union[FlowMatchEulerDiscreteScheduler, KarrasDiffusionSchedulers], | |
vae: AutoencoderKL, | |
text_encoder: T5EncoderModel, | |
tokenizer: T5TokenizerFast, | |
controlnet: BriaControlNetModel, | |
): | |
super().__init__( | |
transformer=transformer, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer | |
) | |
self.register_modules(controlnet=controlnet) | |
def prepare_image( | |
self, | |
image, | |
width, | |
height, | |
batch_size, | |
num_images_per_prompt, | |
device, | |
dtype, | |
do_classifier_free_guidance=False, | |
guess_mode=False, | |
): | |
if isinstance(image, torch.Tensor): | |
pass | |
else: | |
image = self.image_processor.preprocess(image, height=height, width=width) | |
image_batch_size = image.shape[0] | |
if image_batch_size == 1: | |
repeat_by = batch_size | |
else: | |
# image batch size is the same as prompt batch size | |
repeat_by = num_images_per_prompt | |
image = image.repeat_interleave(repeat_by, dim=0) | |
image = image.to(device=device, dtype=dtype) | |
if do_classifier_free_guidance and not guess_mode: | |
image = torch.cat([image] * 2) | |
return image | |
def prepare_control(self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode): | |
num_channels_latents = self.transformer.config.in_channels // 4 | |
control_image = self.prepare_image( | |
image=control_image, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=self.vae.dtype, | |
) | |
height, width = control_image.shape[-2:] | |
# vae encode | |
control_image = self.vae.encode(control_image).latent_dist.sample() | |
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
# pack | |
height_control_image, width_control_image = control_image.shape[2:] | |
control_image = self._pack_latents( | |
control_image, | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height_control_image, | |
width_control_image, | |
) | |
# Here we ensure that `control_mode` has the same length as the control_image. | |
if control_mode is not None: | |
if not isinstance(control_mode, int): | |
raise ValueError(" For `BriaControlNet`, `control_mode` should be an `int` or `None`") | |
control_mode = torch.tensor(control_mode).to(device, dtype=torch.long) | |
control_mode = control_mode.view(-1, 1).expand(control_image.shape[0], 1) | |
return control_image, control_mode | |
def prepare_multi_control(self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode): | |
num_channels_latents = self.transformer.config.in_channels // 4 | |
control_images = [] | |
for i, control_image_ in enumerate(control_image): | |
control_image_ = self.prepare_image( | |
image=control_image_, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=self.vae.dtype, | |
) | |
height, width = control_image_.shape[-2:] | |
# vae encode | |
control_image_ = self.vae.encode(control_image_).latent_dist.sample() | |
control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
# pack | |
height_control_image, width_control_image = control_image_.shape[2:] | |
control_image_ = self._pack_latents( | |
control_image_, | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height_control_image, | |
width_control_image, | |
) | |
control_images.append(control_image_) | |
control_image = control_images | |
# Here we ensure that `control_mode` has the same length as the control_image. | |
if isinstance(control_mode, list) and len(control_mode) != len(control_image): | |
raise ValueError( | |
"For Multi-ControlNet, `control_mode` must be a list of the same " | |
+ " length as the number of controlnets (control images) specified" | |
) | |
if not isinstance(control_mode, list): | |
control_mode = [control_mode] * len(control_image) | |
# set control mode | |
control_modes = [] | |
for cmode in control_mode: | |
if cmode is None: | |
cmode = -1 | |
control_mode = torch.tensor(cmode).expand(control_images[0].shape[0]).to(device, dtype=torch.long) | |
control_modes.append(control_mode) | |
control_mode = control_modes | |
return control_image, control_mode | |
def get_controlnet_keep(self, timesteps, control_guidance_start, control_guidance_end): | |
controlnet_keep = [] | |
for i in range(len(timesteps)): | |
keeps = [ | |
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | |
for s, e in zip(control_guidance_start, control_guidance_end) | |
] | |
controlnet_keep.append(keeps[0] if isinstance(self.controlnet, BriaControlNetModel) else keeps) | |
return controlnet_keep | |
def get_control_start_end(self, control_guidance_start, control_guidance_end): | |
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): | |
control_guidance_start = len(control_guidance_end) * [control_guidance_start] | |
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): | |
control_guidance_end = len(control_guidance_start) * [control_guidance_end] | |
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): | |
mult = 1 # TODO - why is this 1? | |
control_guidance_start, control_guidance_end = ( | |
mult * [control_guidance_start], | |
mult * [control_guidance_end], | |
) | |
return control_guidance_start, control_guidance_end | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 30, | |
timesteps: List[int] = None, | |
guidance_scale: float = 3.5, | |
control_guidance_start: Union[float, List[float]] = 0.0, | |
control_guidance_end: Union[float, List[float]] = 1.0, | |
control_image: Optional[PipelineImageInput] = None, | |
control_mode: Optional[Union[int, List[int]]] = None, | |
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 128, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 5.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | |
of a plain tuple. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a | |
`tuple`. When returning a tuple, the first element is a list with the generated images. | |
""" | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
control_guidance_start, control_guidance_end = self.get_control_start_end( | |
control_guidance_start=control_guidance_start, control_guidance_end=control_guidance_end | |
) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
max_sequence_length=max_sequence_length, | |
) | |
self._guidance_scale = guidance_scale | |
self._joint_attention_kwargs = joint_attention_kwargs | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
lora_scale = self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
(prompt_embeds, negative_prompt_embeds, text_ids) = self.encode_prompt( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
lora_scale=lora_scale, | |
) | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
# 3. Prepare control image | |
if control_image is not None: | |
if isinstance(self.controlnet, BriaControlNetModel): | |
control_image, control_mode = self.prepare_control( | |
control_image=control_image, | |
width=width, | |
height=height, | |
batch_size=batch_size, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
control_mode=control_mode, | |
) | |
elif isinstance(self.controlnet, BriaMultiControlNetModel): | |
control_image, control_mode = self.prepare_multi_control( | |
control_image=control_image, | |
width=width, | |
height=height, | |
batch_size=batch_size, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
control_mode=control_mode, | |
) | |
# 4. Prepare timesteps | |
# Sample from training sigmas | |
sigmas = get_original_sigmas( | |
num_train_timesteps=self.scheduler.config.num_train_timesteps, num_inference_steps=num_inference_steps | |
) | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas | |
) | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
self._num_timesteps = len(timesteps) | |
# 5. Prepare latent variables | |
num_channels_latents = self.transformer.config.in_channels // 4 # due to patch=2, we devide by 4 | |
latents, latent_image_ids = self.prepare_latents( | |
batch_size=batch_size * num_images_per_prompt, | |
num_channels_latents=num_channels_latents, | |
height=height, | |
width=width, | |
dtype=prompt_embeds.dtype, | |
device=device, | |
generator=generator, | |
latents=latents, | |
) | |
# 6. Create tensor stating which controlnets to keep | |
if control_image is not None: | |
controlnet_keep = self.get_controlnet_keep( | |
timesteps=timesteps, | |
control_guidance_start=control_guidance_start, | |
control_guidance_end=control_guidance_end, | |
) | |
# EYAL - added the CFG loop | |
# 7. Denoising loop | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
# if type(self.scheduler) != FlowMatchEulerDiscreteScheduler: | |
if not isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler): | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latent_model_input.shape[0]) | |
# Handling ControlNet | |
if control_image is not None: | |
if isinstance(controlnet_keep[i], list): | |
if isinstance(controlnet_conditioning_scale, list): | |
cond_scale = controlnet_conditioning_scale | |
else: | |
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] | |
else: | |
controlnet_cond_scale = controlnet_conditioning_scale | |
if isinstance(controlnet_cond_scale, list): | |
controlnet_cond_scale = controlnet_cond_scale[0] | |
cond_scale = controlnet_cond_scale * controlnet_keep[i] | |
# controlnet | |
controlnet_block_samples, controlnet_single_block_samples = self.controlnet( | |
hidden_states=latents, | |
controlnet_cond=control_image, | |
controlnet_mode=control_mode, | |
conditioning_scale=cond_scale, | |
timestep=timestep, | |
# guidance=guidance, | |
# pooled_projections=pooled_prompt_embeds, | |
encoder_hidden_states=prompt_embeds, | |
txt_ids=text_ids, | |
img_ids=latent_image_ids, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
) | |
else: | |
controlnet_block_samples, controlnet_single_block_samples = None, None | |
# This is predicts "v" from flow-matching | |
noise_pred = self.transformer( | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=prompt_embeds, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
txt_ids=text_ids, | |
img_ids=latent_image_ids, | |
controlnet_block_samples=controlnet_block_samples, | |
controlnet_single_block_samples=controlnet_single_block_samples, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = latents.dtype | |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
if latents.dtype != latents_dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
latents = latents.to(latents_dtype) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
if output_type == "latent": | |
image = latents | |
else: | |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0] | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return FluxPipelineOutput(images=image) | |