Spaces:
Runtime error
Runtime error
| import sys | |
| sys.path.append('./') | |
| import gradio as gr | |
| import spaces | |
| import os | |
| import sys | |
| import subprocess | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 | |
| import torch | |
| import random | |
| os.system("pip install -e ./controlnet_aux") | |
| from controlnet_aux import OpenposeDetector, CannyDetector | |
| from depth_anything_v2.dpt import DepthAnythingV2 | |
| from huggingface_hub import hf_hub_download | |
| from huggingface_hub import login | |
| hf_token = os.environ.get("HF_TOKEN_GATED") | |
| login(token=hf_token) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| model_configs = { | |
| 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, | |
| 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, | |
| 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
| 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} | |
| } | |
| encoder = 'vitl' | |
| model = DepthAnythingV2(**model_configs[encoder]) | |
| filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model") | |
| state_dict = torch.load(filepath, map_location="cpu") | |
| model.load_state_dict(state_dict) | |
| model = model.to(DEVICE).eval() | |
| import torch | |
| from diffusers.utils import load_image | |
| from diffusers import FluxControlNetPipeline, FluxControlNetModel | |
| from diffusers.models import FluxMultiControlNetModel | |
| base_model = 'black-forest-labs/FLUX.1-dev' | |
| controlnet_model = 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro' | |
| controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) | |
| controlnet = FluxMultiControlNetModel([controlnet]) | |
| pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16) | |
| pipe.to("cuda") | |
| mode_mapping = {"canny":0, "tile":1, "depth":2, "blur":3, "openpose":4, "gray":5, "low quality": 6} | |
| strength_mapping = {"canny":0.65, "tile":0.45, "depth":0.55, "blur":0.45, "openpose":0.55, "gray":0.45, "low quality": 0.4} | |
| canny = CannyDetector() | |
| open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators") | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| pipe.vae.enable_tiling() | |
| pipe.vae.enable_slicing() | |
| pipe.enable_model_cpu_offload() # for saving memory | |
| def convert_from_image_to_cv2(img: Image) -> np.ndarray: | |
| return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
| def convert_from_cv2_to_image(img: np.ndarray) -> Image: | |
| return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
| def extract_depth(image): | |
| image = np.asarray(image) | |
| depth = model.infer_image(image[:, :, ::-1]) | |
| depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
| depth = depth.astype(np.uint8) | |
| gray_depth = Image.fromarray(depth).convert('RGB') | |
| return gray_depth | |
| def extract_openpose(img): | |
| processed_image_open_pose = open_pose(img, hand_and_face=True) | |
| return processed_image_open_pose | |
| def extract_canny(image): | |
| processed_image_canny = canny(image) | |
| return processed_image_canny | |
| def apply_gaussian_blur(image, kernel_size=(21, 21)): | |
| image = convert_from_image_to_cv2(image) | |
| blurred_image = convert_from_cv2_to_image(cv2.GaussianBlur(image, kernel_size, 0)) | |
| return blurred_image | |
| def convert_to_grayscale(image): | |
| image = convert_from_image_to_cv2(image) | |
| gray_image = convert_from_cv2_to_image(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)) | |
| return gray_image | |
| def add_gaussian_noise(image, mean=0, sigma=10): | |
| image = convert_from_image_to_cv2(image) | |
| noise = np.random.normal(mean, sigma, image.shape) | |
| noisy_image = convert_from_cv2_to_image(np.clip(image.astype(np.float32) + noise, 0, 255).astype(np.uint8)) | |
| return noisy_image | |
| def tile(input_image, resolution=768): | |
| input_image = convert_from_image_to_cv2(input_image) | |
| H, W, C = input_image.shape | |
| H = float(H) | |
| W = float(W) | |
| k = float(resolution) / min(H, W) | |
| H *= k | |
| W *= k | |
| H = int(np.round(H / 64.0)) * 64 | |
| W = int(np.round(W / 64.0)) * 64 | |
| img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) | |
| img = convert_from_cv2_to_image(img) | |
| return img | |
| def resize_img(input_image, max_side=768, min_side=512, size=None, | |
| pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): | |
| w, h = input_image.size | |
| if size is not None: | |
| w_resize_new, h_resize_new = size | |
| else: | |
| ratio = min_side / min(h, w) | |
| w, h = round(ratio*w), round(ratio*h) | |
| ratio = max_side / max(h, w) | |
| input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) | |
| w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
| h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
| input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
| if pad_to_max_side: | |
| res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
| offset_x = (max_side - w_resize_new) // 2 | |
| offset_y = (max_side - h_resize_new) // 2 | |
| res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) | |
| input_image = Image.fromarray(res) | |
| return input_image | |
| def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)): | |
| control_mode_num = mode_mapping[control_mode] | |
| if cond_in is None: | |
| if image_in is not None: | |
| image_in = resize_img(load_image(image_in)) | |
| if control_mode == "canny": | |
| control_image = extract_canny(image_in) | |
| elif control_mode == "depth": | |
| control_image = extract_depth(image_in) | |
| elif control_mode == "openpose": | |
| control_image = extract_openpose(image_in) | |
| elif control_mode == "blur": | |
| control_image = apply_gaussian_blur(image_in) | |
| elif control_mode == "low quality": | |
| control_image = add_gaussian_noise(image_in) | |
| elif control_mode == "gray": | |
| control_image = convert_to_grayscale(image_in) | |
| elif control_mode == "tile": | |
| control_image = tile(image_in) | |
| else: | |
| control_image = resize_img(load_image(cond_in)) | |
| width, height = control_image.size | |
| image = pipe( | |
| prompt, | |
| control_image=[control_image], | |
| control_mode=[control_mode_num], | |
| width=width, | |
| height=height, | |
| controlnet_conditioning_scale=[control_strength], | |
| num_inference_steps=inference_steps, | |
| guidance_scale=guidance_scale, | |
| generator=torch.manual_seed(seed), | |
| ).images[0] | |
| torch.cuda.empty_cache() | |
| return image, control_image, gr.update(visible=True) | |
| css=""" | |
| #col-container{ | |
| margin: 0 auto; | |
| max-width: 1080px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(""" | |
| # FLUX.1-dev-ControlNet-Union-Pro | |
| A unified ControlNet for FLUX.1-dev model from the InstantX team and Shakker Labs. Model card: [Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro](https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro). <br /> | |
| The recommended strength: {"canny":0.65, "tile":0.45, "depth":0.55, "blur":0.45, "openpose":0.55, "gray":0.45, "low quality": 0.4}. Long prompt is preferred by FLUX.1. | |
| """) | |
| with gr.Column(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(equal_height=True): | |
| cond_in = gr.Image(label="Upload a processed control image", sources=["upload"], type="filepath") | |
| image_in = gr.Image(label="Extract condition from a reference image (Optional)", sources=["upload"], type="filepath") | |
| prompt = gr.Textbox(label="Prompt", value="best quality") | |
| with gr.Accordion("Controlnet"): | |
| control_mode = gr.Radio( | |
| ["canny", "depth", "openpose", "gray", "blur", "tile", "low quality"], label="Mode", value="gray", | |
| info="select the control mode, one for all" | |
| ) | |
| control_strength = gr.Slider( | |
| label="control strength", | |
| minimum=0, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.50, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=42, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Accordion("Advanced settings", open=False): | |
| with gr.Column(): | |
| with gr.Row(): | |
| inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=24) | |
| guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=3.5) | |
| submit_btn = gr.Button("Submit") | |
| with gr.Column(): | |
| result = gr.Image(label="Result") | |
| processed_cond = gr.Image(label="Preprocessed Cond") | |
| submit_btn.click( | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| queue=False, | |
| api_name=False | |
| ).then( | |
| fn = infer, | |
| inputs = [cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed], | |
| outputs = [result, processed_cond], | |
| show_api=False | |
| ) | |
| demo.queue(api_open=False) | |
| demo.launch() |