TalHach61 commited on
Commit
859e43c
·
verified ·
1 Parent(s): a2f40bb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +104 -103
app.py CHANGED
@@ -14,17 +14,28 @@ import random
14
 
15
  os.system("pip install -e ./controlnet_aux")
16
 
17
- from controlnet_aux import OpenposeDetector, CannyDetector
18
  from depth_anything_v2.dpt import DepthAnythingV2
19
 
20
  from huggingface_hub import hf_hub_download
21
 
22
  from huggingface_hub import login
23
- hf_token = os.environ.get("HF_TOKEN_GATED")
24
  login(token=hf_token)
25
 
26
  MAX_SEED = np.iinfo(np.int32).max
27
 
 
 
 
 
 
 
 
 
 
 
 
28
  def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
29
  if randomize_seed:
30
  seed = random.randint(0, MAX_SEED)
@@ -38,6 +49,20 @@ model_configs = {
38
  'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
39
  }
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  encoder = 'vitl'
42
  model = DepthAnythingV2(**model_configs[encoder])
43
  filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model")
@@ -47,25 +72,35 @@ model = model.to(DEVICE).eval()
47
 
48
  import torch
49
  from diffusers.utils import load_image
50
- from diffusers import FluxControlNetPipeline, FluxControlNetModel
51
- from diffusers.models import FluxMultiControlNetModel
 
52
 
53
- base_model = 'black-forest-labs/FLUX.1-dev'
54
- controlnet_model = 'Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro'
55
- controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
56
- controlnet = FluxMultiControlNetModel([controlnet])
57
- pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
58
- pipe.to("cuda")
59
 
60
- mode_mapping = {"canny":0, "tile":1, "depth":2, "blur":3, "openpose":4, "gray":5, "low quality": 6}
61
- strength_mapping = {"canny":0.65, "tile":0.45, "depth":0.55, "blur":0.45, "openpose":0.55, "gray":0.45, "low quality": 0.4}
62
-
63
- canny = CannyDetector()
 
 
 
 
 
 
 
 
 
 
 
 
64
  open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
65
 
66
  torch.backends.cuda.matmul.allow_tf32 = True
67
- pipe.vae.enable_tiling()
68
- pipe.vae.enable_slicing()
69
  pipe.enable_model_cpu_offload() # for saving memory
70
 
71
  def convert_from_image_to_cv2(img: Image) -> np.ndarray:
@@ -84,102 +119,69 @@ def extract_depth(image):
84
 
85
  def extract_openpose(img):
86
  processed_image_open_pose = open_pose(img, hand_and_face=True)
 
87
  return processed_image_open_pose
88
 
89
- def extract_canny(image):
90
- processed_image_canny = canny(image)
91
- return processed_image_canny
 
 
 
 
92
 
93
- def apply_gaussian_blur(image, kernel_size=(21, 21)):
94
- image = convert_from_image_to_cv2(image)
95
- blurred_image = convert_from_cv2_to_image(cv2.GaussianBlur(image, kernel_size, 0))
96
- return blurred_image
97
 
98
  def convert_to_grayscale(image):
99
- image = convert_from_image_to_cv2(image)
100
- gray_image = convert_from_cv2_to_image(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))
101
  return gray_image
102
 
103
- def add_gaussian_noise(image, mean=0, sigma=10):
104
- image = convert_from_image_to_cv2(image)
105
- noise = np.random.normal(mean, sigma, image.shape)
106
- noisy_image = convert_from_cv2_to_image(np.clip(image.astype(np.float32) + noise, 0, 255).astype(np.uint8))
107
- return noisy_image
108
-
109
- def tile(input_image, resolution=768):
110
- input_image = convert_from_image_to_cv2(input_image)
111
- H, W, C = input_image.shape
112
- H = float(H)
113
- W = float(W)
114
- k = float(resolution) / min(H, W)
115
- H *= k
116
- W *= k
117
- H = int(np.round(H / 64.0)) * 64
118
- W = int(np.round(W / 64.0)) * 64
119
- img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
120
- img = convert_from_cv2_to_image(img)
121
- return img
122
-
123
- def resize_img(input_image, max_side=768, min_side=512, size=None,
124
- pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
125
-
126
- w, h = input_image.size
127
- if size is not None:
128
- w_resize_new, h_resize_new = size
129
- else:
130
- ratio = min_side / min(h, w)
131
- w, h = round(ratio*w), round(ratio*h)
132
- ratio = max_side / max(h, w)
133
- input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
134
- w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
135
- h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
136
- input_image = input_image.resize([w_resize_new, h_resize_new], mode)
137
-
138
- if pad_to_max_side:
139
- res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
140
- offset_x = (max_side - w_resize_new) // 2
141
- offset_y = (max_side - h_resize_new) // 2
142
- res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
143
- input_image = Image.fromarray(res)
144
- return input_image
145
 
146
  @spaces.GPU(duration=180)
147
- def infer(cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)):
148
-
149
  control_mode_num = mode_mapping[control_mode]
150
 
151
- if cond_in is None:
152
- if image_in is not None:
153
- image_in = resize_img(load_image(image_in))
154
- if control_mode == "canny":
155
- control_image = extract_canny(image_in)
156
- elif control_mode == "depth":
157
- control_image = extract_depth(image_in)
158
- elif control_mode == "openpose":
159
- control_image = extract_openpose(image_in)
160
- elif control_mode == "blur":
161
- control_image = apply_gaussian_blur(image_in)
162
- elif control_mode == "low quality":
163
- control_image = add_gaussian_noise(image_in)
164
- elif control_mode == "gray":
165
- control_image = convert_to_grayscale(image_in)
166
- elif control_mode == "tile":
167
- control_image = tile(image_in)
168
- else:
169
- control_image = resize_img(load_image(cond_in))
170
 
171
  width, height = control_image.size
172
 
173
  image = pipe(
174
  prompt,
175
- control_image=[control_image],
176
- control_mode=[control_mode_num],
177
  width=width,
178
  height=height,
179
- controlnet_conditioning_scale=[control_strength],
180
  num_inference_steps=inference_steps,
181
  guidance_scale=guidance_scale,
182
  generator=torch.manual_seed(seed),
 
 
183
  ).images[0]
184
 
185
  torch.cuda.empty_cache()
@@ -196,9 +198,8 @@ css="""
196
  with gr.Blocks(css=css) as demo:
197
  with gr.Column(elem_id="col-container"):
198
  gr.Markdown("""
199
- # FLUX.1-dev-ControlNet-Union-Pro
200
- A unified ControlNet for FLUX.1-dev model from the InstantX team and Shakker Labs. Model card: [Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro](https://huggingface.co/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro). <br />
201
- The recommended strength: {"canny":0.65, "tile":0.45, "depth":0.55, "blur":0.45, "openpose":0.55, "gray":0.45, "low quality": 0.4}. Long prompt is preferred by FLUX.1.
202
  """)
203
 
204
  with gr.Column():
@@ -206,15 +207,15 @@ with gr.Blocks(css=css) as demo:
206
  with gr.Row():
207
  with gr.Column():
208
 
209
- with gr.Row(equal_height=True):
210
- cond_in = gr.Image(label="Upload a processed control image", sources=["upload"], type="filepath")
211
- image_in = gr.Image(label="Extract condition from a reference image (Optional)", sources=["upload"], type="filepath")
212
 
213
  prompt = gr.Textbox(label="Prompt", value="best quality")
214
 
215
  with gr.Accordion("Controlnet"):
216
  control_mode = gr.Radio(
217
- ["canny", "depth", "openpose", "gray", "blur", "tile", "low quality"], label="Mode", value="gray",
218
  info="select the control mode, one for all"
219
  )
220
 
@@ -223,7 +224,7 @@ with gr.Blocks(css=css) as demo:
223
  minimum=0,
224
  maximum=1.0,
225
  step=0.05,
226
- value=0.50,
227
  )
228
 
229
  seed = gr.Slider(
@@ -231,15 +232,15 @@ with gr.Blocks(css=css) as demo:
231
  minimum=0,
232
  maximum=MAX_SEED,
233
  step=1,
234
- value=42,
235
  )
236
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
237
 
238
  with gr.Accordion("Advanced settings", open=False):
239
  with gr.Column():
240
  with gr.Row():
241
- inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=24)
242
- guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=3.5)
243
 
244
  submit_btn = gr.Button("Submit")
245
 
@@ -255,7 +256,7 @@ with gr.Blocks(css=css) as demo:
255
  api_name=False
256
  ).then(
257
  fn = infer,
258
- inputs = [cond_in, image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed],
259
  outputs = [result, processed_cond],
260
  show_api=False
261
  )
 
14
 
15
  os.system("pip install -e ./controlnet_aux")
16
 
17
+ from controlnet_aux import OpenposeDetector #, CannyDetector
18
  from depth_anything_v2.dpt import DepthAnythingV2
19
 
20
  from huggingface_hub import hf_hub_download
21
 
22
  from huggingface_hub import login
23
+ hf_token = os.environ.get("HF_TOKEN")
24
  login(token=hf_token)
25
 
26
  MAX_SEED = np.iinfo(np.int32).max
27
 
28
+ try:
29
+ local_dir = os.path.dirname(__file__)
30
+ except:
31
+ local_dir = '.'
32
+
33
+ hf_hub_download(repo_id="briaai/BRIA-3.2", filename='pipeline_bria.py', local_dir=local_dir)
34
+ hf_hub_download(repo_id="briaai/BRIA-3.2", filename='transformer_bria.py', local_dir=local_dir)
35
+ hf_hub_download(repo_id="briaai/BRIA-3.2", filename='bria_utils.py', local_dir=local_dir)
36
+ hf_hub_download(repo_id="briaai/BRIA-3.2-ControlNet-Union", filename='pipeline_bria_controlnet.py', local_dir=local_dir)
37
+ hf_hub_download(repo_id="briaai/BRIA-3.2-ControlNet-Union", filename='controlnet_bria.py', local_dir=local_dir)
38
+
39
  def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
40
  if randomize_seed:
41
  seed = random.randint(0, MAX_SEED)
 
49
  'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
50
  }
51
 
52
+ RATIO_CONFIGS_1024 = {
53
+ 0.6666666666666666: {"width": 832, "height": 1248},
54
+ 0.7432432432432432: {"width": 880, "height": 1184},
55
+ 0.8028169014084507: {"width": 912, "height": 1136},
56
+ 1.0: {"width": 1024, "height": 1024},
57
+ 1.2456140350877194: {"width": 1136, "height": 912},
58
+ 1.3454545454545455: {"width": 1184, "height": 880},
59
+ 1.4339622641509433: {"width": 1216, "height": 848},
60
+ 1.5: {"width": 1248, "height": 832},
61
+ 1.5490196078431373: {"width": 1264, "height": 816},
62
+ 1.62: {"width": 1296, "height": 800},
63
+ 1.7708333333333333: {"width": 1360, "height": 768},
64
+ }
65
+
66
  encoder = 'vitl'
67
  model = DepthAnythingV2(**model_configs[encoder])
68
  filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_vitl.pth", repo_type="model")
 
72
 
73
  import torch
74
  from diffusers.utils import load_image
75
+ from controlnet_bria import BriaControlNetModel, BriaMultiControlNetModel
76
+ from pipeline_bria_controlnet import BriaControlNetPipeline
77
+ import PIL.Image as Image
78
 
79
+ base_model = 'briaai/BRIA-3.2'
80
+ controlnet_model = 'briaai/BRIA-3.2-ControlNet-Union'
81
+ controlnet = BriaControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
82
+ pipe = BriaControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16, trust_remote_code=True)
83
+ pipe = pipe.to(device="cuda", dtype=torch.bfloat16)
 
84
 
85
+ mode_mapping = {
86
+ "depth": 0,
87
+ "canny": 1,
88
+ "colorgrid": 2,
89
+ "recolor": 3,
90
+ "tile": 4,
91
+ "pose": 5,
92
+ }
93
+ strength_mapping = {
94
+ "depth": 1.0,
95
+ "canny": 1.0,
96
+ "colorgrid": 1.0,
97
+ "recolor": 1.0,
98
+ "tile": 1.0,
99
+ "pose": 1.0,
100
+ }
101
  open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
102
 
103
  torch.backends.cuda.matmul.allow_tf32 = True
 
 
104
  pipe.enable_model_cpu_offload() # for saving memory
105
 
106
  def convert_from_image_to_cv2(img: Image) -> np.ndarray:
 
119
 
120
  def extract_openpose(img):
121
  processed_image_open_pose = open_pose(img, hand_and_face=True)
122
+ processed_image_open_pose = processed_image_open_pose.resize(img.size)
123
  return processed_image_open_pose
124
 
125
+ def extract_canny(input_image):
126
+ image = np.array(input_image)
127
+ image = cv2.Canny(image, 100, 200)
128
+ image = image[:, :, None]
129
+ image = np.concatenate([image, image, image], axis=2)
130
+ canny_image = Image.fromarray(image)
131
+ return canny_image
132
 
 
 
 
 
133
 
134
  def convert_to_grayscale(image):
135
+ gray_image = image.convert('L').convert('RGB')
 
136
  return gray_image
137
 
138
+ def tile(downscale_factor, input_image):
139
+ control_image = input_image.resize((input_image.size[0] // downscale_factor, input_image.size[1] // downscale_factor)).resize(input_image.size, Image.NEAREST)
140
+ return control_image
141
+
142
+ def resize_img(control_image):
143
+ image_ratio = control_image.width / control_image.height
144
+ ratio = min(RATIO_CONFIGS_1024.keys(), key=lambda k: abs(k - image_ratio))
145
+ to_height = RATIO_CONFIGS_1024[ratio]["height"]
146
+ to_width = RATIO_CONFIGS_1024[ratio]["width"]
147
+ resized_image = control_image.resize((to_width, to_height), resample=Image.Resampling.LANCZOS)
148
+ return resized_image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149
 
150
  @spaces.GPU(duration=180)
151
+ def infer(image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed, progress=gr.Progress(track_tqdm=True)):
 
152
  control_mode_num = mode_mapping[control_mode]
153
 
154
+ if image_in is not None:
155
+ image_in = resize_img(load_image(image_in))
156
+ if control_mode == "canny":
157
+ control_image = extract_canny(image_in)
158
+ elif control_mode == "depth":
159
+ control_image = extract_depth(image_in)
160
+ elif control_mode == "pose":
161
+ control_image = extract_openpose(image_in)
162
+ elif control_mode == "colorgrid":
163
+ control_image = tile(64, image_in)
164
+ elif control_mode == "recolor":
165
+ control_image = convert_to_grayscale(image_in)
166
+ elif control_mode == "tile":
167
+ control_image = tile(16, image_in)
168
+
169
+ control_image = resize_img(control_image)
 
 
 
170
 
171
  width, height = control_image.size
172
 
173
  image = pipe(
174
  prompt,
175
+ control_image=control_image,
176
+ control_mode=control_mode_num,
177
  width=width,
178
  height=height,
179
+ controlnet_conditioning_scale=control_strength,
180
  num_inference_steps=inference_steps,
181
  guidance_scale=guidance_scale,
182
  generator=torch.manual_seed(seed),
183
+ max_sequence_length=128,
184
+ negative_prompt="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate"
185
  ).images[0]
186
 
187
  torch.cuda.empty_cache()
 
198
  with gr.Blocks(css=css) as demo:
199
  with gr.Column(elem_id="col-container"):
200
  gr.Markdown("""
201
+ # BRIA-3.2-ControlNet-Union
202
+ A unified ControlNet for BRIA-3.2 model from Bria.ai.<br />
 
203
  """)
204
 
205
  with gr.Column():
 
207
  with gr.Row():
208
  with gr.Column():
209
 
210
+ # with gr.Row(equal_height=True):
211
+ # cond_in = gr.Image(label="Upload a processed control image", sources=["upload"], type="filepath")
212
+ image_in = gr.Image(label="Extract condition from a reference image (Optional)", sources=["upload"], type="filepath")
213
 
214
  prompt = gr.Textbox(label="Prompt", value="best quality")
215
 
216
  with gr.Accordion("Controlnet"):
217
  control_mode = gr.Radio(
218
+ ["depth", "canny", "colorgrid", "recolor", "tile", "pose"], label="Mode", value="canny",
219
  info="select the control mode, one for all"
220
  )
221
 
 
224
  minimum=0,
225
  maximum=1.0,
226
  step=0.05,
227
+ value=0.9,
228
  )
229
 
230
  seed = gr.Slider(
 
232
  minimum=0,
233
  maximum=MAX_SEED,
234
  step=1,
235
+ value=555,
236
  )
237
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
238
 
239
  with gr.Accordion("Advanced settings", open=False):
240
  with gr.Column():
241
  with gr.Row():
242
+ inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=50)
243
+ guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=10.0, step=0.1, value=5.0)
244
 
245
  submit_btn = gr.Button("Submit")
246
 
 
256
  api_name=False
257
  ).then(
258
  fn = infer,
259
+ inputs = [image_in, prompt, inference_steps, guidance_scale, control_mode, control_strength, seed],
260
  outputs = [result, processed_cond],
261
  show_api=False
262
  )