Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import spaces
|
2 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
|
3 |
-
#from diffusers.utils import load_image
|
4 |
from PIL import Image
|
5 |
import torch
|
6 |
import numpy as np
|
@@ -17,10 +16,10 @@ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
17 |
"briaai/BRIA-2.2",
|
18 |
controlnet=controlnet,
|
19 |
torch_dtype=torch.float16,
|
20 |
-
#device_map='auto',
|
21 |
low_cpu_mem_usage=True,
|
22 |
offload_state_dict=True,
|
23 |
).to('cuda').to(torch.float16)
|
|
|
24 |
pipe.scheduler = EulerAncestralDiscreteScheduler(
|
25 |
beta_start=0.00085,
|
26 |
beta_end=0.012,
|
@@ -28,8 +27,6 @@ pipe.scheduler = EulerAncestralDiscreteScheduler(
|
|
28 |
num_train_timesteps=1000,
|
29 |
steps_offset=1
|
30 |
)
|
31 |
-
# pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
|
32 |
-
# pipe.enable_xformers_memory_efficient_attention()
|
33 |
pipe.force_zeros_for_empty_prompt = False
|
34 |
|
35 |
def resize_image(image):
|
@@ -42,52 +39,50 @@ def resize_image(image):
|
|
42 |
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
|
43 |
return resized_image
|
44 |
|
45 |
-
|
46 |
@spaces.GPU
|
47 |
def generate_(prompt, negative_prompt, grayscale_image, num_steps, controlnet_conditioning_scale, seed):
|
48 |
generator = torch.Generator("cuda").manual_seed(seed)
|
49 |
images = pipe(
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
52 |
).images
|
53 |
return images
|
54 |
|
55 |
@spaces.GPU
|
56 |
def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
|
57 |
-
# resize input_image to 1024x1024
|
58 |
input_image = resize_image(input_image)
|
59 |
-
|
60 |
grayscale_image = input_image.convert('L').convert('RGB')
|
61 |
images = generate_(prompt, negative_prompt, grayscale_image, num_steps, controlnet_conditioning_scale, seed)
|
|
|
62 |
|
63 |
-
# Return both grayscale and output images in a list for the gallery
|
64 |
-
return [grayscale_image, images[0]]
|
65 |
-
|
66 |
block = gr.Blocks().queue()
|
67 |
|
68 |
with block:
|
69 |
gr.Markdown("## BRIA 2.2 ControlNet Recoloring")
|
70 |
gr.HTML('''
|
71 |
<p style="margin-bottom: 10px; font-size: 94%">
|
72 |
-
This is a demo for ControlNet Recoloring that
|
73 |
<a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image model</a> as backbone.
|
74 |
-
Trained on licensed data, BRIA 2.2
|
75 |
</p>
|
76 |
''')
|
77 |
with gr.Row():
|
78 |
with gr.Column():
|
79 |
-
input_image = gr.Image(sources=None, type="pil")
|
80 |
prompt = gr.Textbox(label="Prompt")
|
81 |
negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
|
82 |
num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
|
83 |
controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
|
84 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True
|
85 |
run_button = gr.Button(value="Run")
|
86 |
-
|
87 |
-
|
88 |
with gr.Column():
|
89 |
-
|
|
|
90 |
ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
|
91 |
-
run_button.click(fn=process, inputs=ips, outputs=[
|
92 |
|
93 |
-
block.launch(debug
|
|
|
1 |
import spaces
|
2 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
|
|
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
import numpy as np
|
|
|
16 |
"briaai/BRIA-2.2",
|
17 |
controlnet=controlnet,
|
18 |
torch_dtype=torch.float16,
|
|
|
19 |
low_cpu_mem_usage=True,
|
20 |
offload_state_dict=True,
|
21 |
).to('cuda').to(torch.float16)
|
22 |
+
|
23 |
pipe.scheduler = EulerAncestralDiscreteScheduler(
|
24 |
beta_start=0.00085,
|
25 |
beta_end=0.012,
|
|
|
27 |
num_train_timesteps=1000,
|
28 |
steps_offset=1
|
29 |
)
|
|
|
|
|
30 |
pipe.force_zeros_for_empty_prompt = False
|
31 |
|
32 |
def resize_image(image):
|
|
|
39 |
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
|
40 |
return resized_image
|
41 |
|
|
|
42 |
@spaces.GPU
|
43 |
def generate_(prompt, negative_prompt, grayscale_image, num_steps, controlnet_conditioning_scale, seed):
|
44 |
generator = torch.Generator("cuda").manual_seed(seed)
|
45 |
images = pipe(
|
46 |
+
prompt,
|
47 |
+
negative_prompt=negative_prompt,
|
48 |
+
image=grayscale_image,
|
49 |
+
num_inference_steps=num_steps,
|
50 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
51 |
+
generator=generator,
|
52 |
).images
|
53 |
return images
|
54 |
|
55 |
@spaces.GPU
|
56 |
def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
|
|
|
57 |
input_image = resize_image(input_image)
|
|
|
58 |
grayscale_image = input_image.convert('L').convert('RGB')
|
59 |
images = generate_(prompt, negative_prompt, grayscale_image, num_steps, controlnet_conditioning_scale, seed)
|
60 |
+
return grayscale_image, images[0]
|
61 |
|
|
|
|
|
|
|
62 |
block = gr.Blocks().queue()
|
63 |
|
64 |
with block:
|
65 |
gr.Markdown("## BRIA 2.2 ControlNet Recoloring")
|
66 |
gr.HTML('''
|
67 |
<p style="margin-bottom: 10px; font-size: 94%">
|
68 |
+
This is a demo for ControlNet Recoloring that uses
|
69 |
<a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image model</a> as backbone.
|
70 |
+
Trained on licensed data, BRIA 2.2 provides full legal liability coverage for copyright and privacy infringement.
|
71 |
</p>
|
72 |
''')
|
73 |
with gr.Row():
|
74 |
with gr.Column():
|
75 |
+
input_image = gr.Image(sources=None, type="pil")
|
76 |
prompt = gr.Textbox(label="Prompt")
|
77 |
negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
|
78 |
num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
|
79 |
controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
|
80 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
|
81 |
run_button = gr.Button(value="Run")
|
|
|
|
|
82 |
with gr.Column():
|
83 |
+
preview = gr.Image(label="Control (Grayscale)", type="pil")
|
84 |
+
result = gr.Image(label="Output Image", type="pil")
|
85 |
ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
|
86 |
+
run_button.click(fn=process, inputs=ips, outputs=[preview, result])
|
87 |
|
88 |
+
block.launch(debug=True)
|