from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import xformers import streamlit as st import torch import time import random from transformers.trainer_utils import set_seed import time SEED = int(time.time()) set_seed(SEED) #make columns col1, col2 = st.columns([2,1]) #import model tokenizer = AutoTokenizer.from_pretrained("gpt2-medium") tokenizer.padding_side = 'left' model = AutoModelForCausalLM.from_pretrained("breadlicker45/gpt2-music") def get_model(): return pipeline('text-generation', model=model, tokenizer=tokenizer, do_sample=True) #ui with col1: prompt= st.text_input('input', '''2623 2619 3970 3976 2607 3973 2735 3973 2598 3985 2726 3973 2607 4009 2735 3973 2598 3973 2726 3973 2607 3973 2735 4009''') #gen text text = prompt generator = get_model() gen = st.info('Generating text...') answer = generator(text, pad_token_id=tokenizer.eos_token_id, do_sample=True, max_length=350, min_length=80, temperature=0.7, top_k=2, num_beams=1, no_repeat_ngram_size=1, early_stopping=True) gen.empty() lst = answer[0]['generated_text'] out = lst t = st.empty() for i in range(len(out)): t.markdown("#### %s" % out[0:i]) time.sleep(0.04)