import gradio as gr from transformers import pipeline # Define model names models = { "ModernBERT Large (gender v2)": "breadlicker45/modernbert-gender-v2", "ModernBERT Base (gender)": "breadlicker45/ModernBERT-base-gender", "ModernBERT Large (gender)": "breadlicker45/ModernBERT-large-gender" } # Define the mapping for user-friendly labels # Note: Transformers pipelines often output 'LABEL_0', 'LABEL_1'. # We handle potential variations like just '0', '1'. label_map = { "LABEL_0": "Male (0)", "0": "Male (0)", "LABEL_1": "Female (1)", "1": "Female (1)" } # Function to load the selected model and classify text def classify_text(model_name, text): try: classifier = pipeline("text-classification", model=models[model_name], top_k=None) predictions = classifier(text) # Process predictions to use friendly labels processed_results = {} if predictions and isinstance(predictions, list) and predictions[0]: # predictions[0] should be a list of label dicts like [{'label': 'LABEL_1', 'score': 0.9...}, ...] for pred in predictions[0]: raw_label = pred["label"] score = pred["score"] # Use the map to get a friendly name, fallback to the raw label if not found friendly_label = label_map.get(raw_label, raw_label) processed_results[friendly_label] = score return processed_results except Exception as e: # Handle potential errors during model loading or inference print(f"Error: {e}") # Return an error message suitable for gr.Label return {"Error": f"Failed to process: {e}"} # Create the Gradio interface interface = gr.Interface( fn=classify_text, inputs=[ gr.Dropdown( list(models.keys()), label="Select Model", value="ModernBERT Large (gender)" # Default model ), gr.Textbox( lines=2, placeholder="Enter text to classify for perceived gender...", # Corrected placeholder value="This is an example sentence." # Changed example text ) ], # The gr.Label component works well for showing classification scores outputs=gr.Label(num_top_classes=2), # Show both classes explicitly title="ModernBERT Gender Classifier", description="Select a model and enter a sentence to see the perceived gender classification (Male=0, Female=1) and confidence scores. Note: Text-based gender classification can be unreliable and reflect societal biases.", # Updated description ) # Launch the app if __name__ == "__main__": interface.launch()