import argparse import yaml import torch import os import sys from pathlib import Path import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser(description="OmniAvatar-14B Inference") parser.add_argument("--config", type=str, required=True, help="Path to config file") parser.add_argument("--input_file", type=str, required=True, help="Path to input samples file") parser.add_argument("--guidance_scale", type=float, default=5.0, help="Guidance scale") parser.add_argument("--audio_scale", type=float, default=3.0, help="Audio guidance scale") parser.add_argument("--num_steps", type=int, default=30, help="Number of inference steps") parser.add_argument("--sp_size", type=int, default=1, help="Multi-GPU size") parser.add_argument("--tea_cache_l1_thresh", type=float, default=None, help="TeaCache threshold") return parser.parse_args() def load_config(config_path): with open(config_path, 'r') as f: return yaml.safe_load(f) def process_input_file(input_file): """Parse input file with format: prompt@@image_path@@audio_path""" samples = [] with open(input_file, 'r') as f: for line in f: line = line.strip() if line: parts = line.split('@@') if len(parts) >= 3: prompt = parts[0] image_path = parts[1] if parts[1] else None audio_path = parts[2] samples.append({ 'prompt': prompt, 'image_path': image_path, 'audio_path': audio_path }) return samples def main(): args = parse_args() # Load configuration config = load_config(args.config) # Process input samples samples = process_input_file(args.input_file) logger.info(f"Processing {len(samples)} samples") # Create output directory output_dir = Path(config['output']['output_dir']) output_dir.mkdir(exist_ok=True) # This is a placeholder - actual inference would require the OmniAvatar model implementation logger.info("Note: This is a placeholder inference script.") logger.info("Actual implementation would require:") logger.info("1. Loading the OmniAvatar model") logger.info("2. Processing audio with wav2vec2") logger.info("3. Running video generation pipeline") logger.info("4. Saving output videos") for i, sample in enumerate(samples): logger.info(f"Sample {i+1}: {sample['prompt']}") logger.info(f" Audio: {sample['audio_path']}") logger.info(f" Image: {sample['image_path']}") logger.info("Inference completed successfully!") if __name__ == "__main__": main()