Spaces:
Running
Running
bravedims
commited on
Commit
·
bcba9ba
1
Parent(s):
da41971
\🔥 CRITICAL: Fix unterminated triple-quoted string syntax error"
Browse files- app.py.backup +482 -137
- app_fixed.py +828 -0
- app_temp.py +827 -0
app.py.backup
CHANGED
|
@@ -3,6 +3,7 @@ import torch
|
|
| 3 |
import tempfile
|
| 4 |
import gradio as gr
|
| 5 |
from fastapi import FastAPI, HTTPException
|
|
|
|
| 6 |
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
from pydantic import BaseModel, HttpUrl
|
| 8 |
import subprocess
|
|
@@ -25,23 +26,50 @@ load_dotenv()
|
|
| 25 |
logging.basicConfig(level=logging.INFO)
|
| 26 |
logger = logging.getLogger(__name__)
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
#
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
# Pydantic models for request/response
|
| 40 |
class GenerateRequest(BaseModel):
|
| 41 |
prompt: str
|
| 42 |
text_to_speech: Optional[str] = None # Text to convert to speech
|
| 43 |
-
|
| 44 |
-
voice_id: Optional[str] = "21m00Tcm4TlvDq8ikWAM" #
|
| 45 |
image_url: Optional[HttpUrl] = None
|
| 46 |
guidance_scale: float = 5.0
|
| 47 |
audio_scale: float = 3.0
|
|
@@ -54,88 +82,216 @@ class GenerateResponse(BaseModel):
|
|
| 54 |
output_path: str
|
| 55 |
processing_time: float
|
| 56 |
audio_generated: bool = False
|
|
|
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
"
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
}
|
| 81 |
|
| 82 |
try:
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
# Save to temporary file
|
| 95 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3')
|
| 96 |
-
temp_file.write(audio_content)
|
| 97 |
-
temp_file.close()
|
| 98 |
-
|
| 99 |
-
logger.info(f"Generated speech audio: {temp_file.name}")
|
| 100 |
-
return temp_file.name
|
| 101 |
-
|
| 102 |
-
except aiohttp.ClientError as e:
|
| 103 |
-
logger.error(f"Network error calling ElevenLabs: {e}")
|
| 104 |
-
raise HTTPException(status_code=400, detail=f"Network error calling ElevenLabs: {e}")
|
| 105 |
except Exception as e:
|
| 106 |
-
logger.
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
class OmniAvatarAPI:
|
| 110 |
def __init__(self):
|
| 111 |
self.model_loaded = False
|
| 112 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 113 |
-
self.
|
| 114 |
logger.info(f"Using device: {self.device}")
|
| 115 |
-
logger.info(
|
| 116 |
|
| 117 |
def load_model(self):
|
| 118 |
-
"""Load the OmniAvatar model"""
|
| 119 |
try:
|
| 120 |
-
# Check if models are downloaded
|
| 121 |
model_paths = [
|
| 122 |
"./pretrained_models/Wan2.1-T2V-14B",
|
| 123 |
"./pretrained_models/OmniAvatar-14B",
|
| 124 |
"./pretrained_models/wav2vec2-base-960h"
|
| 125 |
]
|
| 126 |
|
|
|
|
| 127 |
for path in model_paths:
|
| 128 |
if not os.path.exists(path):
|
| 129 |
-
|
| 130 |
-
return False
|
| 131 |
-
|
| 132 |
-
self.model_loaded = True
|
| 133 |
-
logger.info("Models loaded successfully")
|
| 134 |
-
return True
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
except Exception as e:
|
| 137 |
-
logger.error(f"Error
|
| 138 |
-
|
|
|
|
|
|
|
| 139 |
|
| 140 |
async def download_file(self, url: str, suffix: str = "") -> str:
|
| 141 |
"""Download file from URL and save to temporary location"""
|
|
@@ -165,12 +321,11 @@ class OmniAvatarAPI:
|
|
| 165 |
"""Validate if URL is likely an audio file"""
|
| 166 |
try:
|
| 167 |
parsed = urlparse(url)
|
| 168 |
-
# Check for common audio file extensions
|
| 169 |
-
audio_extensions = ['.mp3', '.wav', '.m4a', '.ogg', '.aac']
|
| 170 |
is_audio_ext = any(parsed.path.lower().endswith(ext) for ext in audio_extensions)
|
| 171 |
-
is_elevenlabs = 'elevenlabs' in parsed.netloc.lower()
|
| 172 |
|
| 173 |
-
return is_audio_ext or
|
| 174 |
except:
|
| 175 |
return False
|
| 176 |
|
|
@@ -183,37 +338,142 @@ class OmniAvatarAPI:
|
|
| 183 |
except:
|
| 184 |
return False
|
| 185 |
|
| 186 |
-
async def generate_avatar(self, request: GenerateRequest) -> tuple[str, float, bool]:
|
| 187 |
-
"""Generate avatar
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
import time
|
| 189 |
start_time = time.time()
|
| 190 |
audio_generated = False
|
|
|
|
| 191 |
|
| 192 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
# Determine audio source
|
| 194 |
audio_path = None
|
| 195 |
|
| 196 |
if request.text_to_speech:
|
| 197 |
-
# Generate speech from text using
|
| 198 |
logger.info(f"Generating speech from text: {request.text_to_speech[:50]}...")
|
| 199 |
-
audio_path = await self.
|
| 200 |
request.text_to_speech,
|
| 201 |
request.voice_id or "21m00Tcm4TlvDq8ikWAM"
|
| 202 |
)
|
| 203 |
audio_generated = True
|
| 204 |
|
| 205 |
-
elif request.
|
| 206 |
# Download audio from provided URL
|
| 207 |
-
logger.info(f"Downloading audio from URL: {request.
|
| 208 |
-
if not self.validate_audio_url(str(request.
|
| 209 |
-
logger.warning(f"Audio URL may not be valid: {request.
|
| 210 |
|
| 211 |
-
audio_path = await self.download_file(str(request.
|
|
|
|
| 212 |
|
| 213 |
else:
|
| 214 |
raise HTTPException(
|
| 215 |
status_code=400,
|
| 216 |
-
detail="Either text_to_speech or
|
| 217 |
)
|
| 218 |
|
| 219 |
# Download image if provided
|
|
@@ -276,7 +536,7 @@ class OmniAvatarAPI:
|
|
| 276 |
video_files.sort(key=lambda x: os.path.getmtime(os.path.join(output_dir, x)), reverse=True)
|
| 277 |
output_path = os.path.join(output_dir, video_files[0])
|
| 278 |
processing_time = time.time() - start_time
|
| 279 |
-
return output_path, processing_time, audio_generated
|
| 280 |
|
| 281 |
raise Exception("No output video generated")
|
| 282 |
|
|
@@ -298,50 +558,99 @@ class OmniAvatarAPI:
|
|
| 298 |
# Initialize API
|
| 299 |
omni_api = OmniAvatarAPI()
|
| 300 |
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
|
|
|
|
|
|
|
|
|
| 304 |
success = omni_api.load_model()
|
| 305 |
if not success:
|
| 306 |
-
logger.warning("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
|
| 308 |
@app.get("/health")
|
| 309 |
async def health_check():
|
| 310 |
"""Health check endpoint"""
|
|
|
|
|
|
|
| 311 |
return {
|
| 312 |
"status": "healthy",
|
| 313 |
"model_loaded": omni_api.model_loaded,
|
|
|
|
|
|
|
| 314 |
"device": omni_api.device,
|
| 315 |
-
"supports_elevenlabs": True,
|
| 316 |
-
"supports_image_urls": True,
|
| 317 |
"supports_text_to_speech": True,
|
| 318 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
}
|
| 320 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
@app.post("/generate", response_model=GenerateResponse)
|
| 322 |
async def generate_avatar(request: GenerateRequest):
|
| 323 |
"""Generate avatar video from prompt, text/audio, and optional image URL"""
|
| 324 |
|
| 325 |
-
if not omni_api.model_loaded:
|
| 326 |
-
raise HTTPException(status_code=503, detail="Model not loaded")
|
| 327 |
-
|
| 328 |
logger.info(f"Generating avatar with prompt: {request.prompt}")
|
| 329 |
if request.text_to_speech:
|
| 330 |
logger.info(f"Text to speech: {request.text_to_speech[:100]}...")
|
| 331 |
logger.info(f"Voice ID: {request.voice_id}")
|
| 332 |
-
if request.
|
| 333 |
-
logger.info(f"Audio URL: {request.
|
| 334 |
if request.image_url:
|
| 335 |
logger.info(f"Image URL: {request.image_url}")
|
| 336 |
|
| 337 |
try:
|
| 338 |
-
output_path, processing_time, audio_generated = await omni_api.generate_avatar(request)
|
| 339 |
|
| 340 |
return GenerateResponse(
|
| 341 |
-
message="
|
| 342 |
-
output_path=output_path,
|
| 343 |
processing_time=processing_time,
|
| 344 |
-
audio_generated=audio_generated
|
|
|
|
| 345 |
)
|
| 346 |
|
| 347 |
except HTTPException:
|
|
@@ -350,12 +659,9 @@ async def generate_avatar(request: GenerateRequest):
|
|
| 350 |
logger.error(f"Unexpected error: {e}")
|
| 351 |
raise HTTPException(status_code=500, detail=f"Unexpected error: {e}")
|
| 352 |
|
| 353 |
-
# Enhanced Gradio interface
|
| 354 |
def gradio_generate(prompt, text_to_speech, audio_url, image_url, voice_id, guidance_scale, audio_scale, num_steps):
|
| 355 |
-
"""Gradio interface wrapper with
|
| 356 |
-
if not omni_api.model_loaded:
|
| 357 |
-
return "Error: Model not loaded"
|
| 358 |
-
|
| 359 |
try:
|
| 360 |
# Create request object
|
| 361 |
request_data = {
|
|
@@ -370,28 +676,46 @@ def gradio_generate(prompt, text_to_speech, audio_url, image_url, voice_id, guid
|
|
| 370 |
request_data["text_to_speech"] = text_to_speech
|
| 371 |
request_data["voice_id"] = voice_id or "21m00Tcm4TlvDq8ikWAM"
|
| 372 |
elif audio_url and audio_url.strip():
|
| 373 |
-
|
|
|
|
|
|
|
|
|
|
| 374 |
else:
|
| 375 |
return "Error: Please provide either text to speech or audio URL"
|
| 376 |
|
| 377 |
if image_url and image_url.strip():
|
| 378 |
-
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
request = GenerateRequest(**request_data)
|
| 381 |
|
| 382 |
# Run async function in sync context
|
| 383 |
loop = asyncio.new_event_loop()
|
| 384 |
asyncio.set_event_loop(loop)
|
| 385 |
-
output_path, processing_time, audio_generated = loop.run_until_complete(omni_api.generate_avatar(request))
|
| 386 |
loop.close()
|
| 387 |
|
| 388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
|
| 390 |
except Exception as e:
|
| 391 |
logger.error(f"Gradio generation error: {e}")
|
| 392 |
return f"Error: {str(e)}"
|
| 393 |
|
| 394 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
iface = gr.Interface(
|
| 396 |
fn=gradio_generate,
|
| 397 |
inputs=[
|
|
@@ -402,60 +726,71 @@ iface = gr.Interface(
|
|
| 402 |
),
|
| 403 |
gr.Textbox(
|
| 404 |
label="Text to Speech",
|
| 405 |
-
placeholder="Enter text to convert to speech
|
| 406 |
lines=3,
|
| 407 |
-
info="
|
| 408 |
),
|
| 409 |
gr.Textbox(
|
| 410 |
label="OR Audio URL",
|
| 411 |
-
placeholder="https://
|
| 412 |
-
info="Direct URL to audio file (
|
| 413 |
),
|
| 414 |
gr.Textbox(
|
| 415 |
label="Image URL (Optional)",
|
| 416 |
placeholder="https://example.com/image.jpg",
|
| 417 |
-
info="Direct URL to reference image (
|
| 418 |
),
|
| 419 |
gr.Dropdown(
|
| 420 |
-
choices=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
value="21m00Tcm4TlvDq8ikWAM",
|
| 422 |
-
label="
|
| 423 |
-
info="Choose voice for
|
| 424 |
),
|
| 425 |
gr.Slider(minimum=1, maximum=10, value=5.0, label="Guidance Scale", info="4-6 recommended"),
|
| 426 |
gr.Slider(minimum=1, maximum=10, value=3.0, label="Audio Scale", info="Higher values = better lip-sync"),
|
| 427 |
gr.Slider(minimum=10, maximum=100, value=30, step=1, label="Number of Steps", info="20-50 recommended")
|
| 428 |
],
|
| 429 |
-
outputs=gr.Video(label="Generated Avatar Video"),
|
| 430 |
-
title="
|
| 431 |
-
description="""
|
| 432 |
-
Generate avatar videos with lip-sync from text prompts and speech.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 433 |
|
| 434 |
**Features:**
|
| 435 |
-
-
|
| 436 |
-
-
|
| 437 |
-
-
|
| 438 |
-
-
|
| 439 |
-
-
|
|
|
|
| 440 |
|
| 441 |
**Usage:**
|
| 442 |
1. Enter a character description in the prompt
|
| 443 |
-
2. **
|
| 444 |
-
3. Optionally add
|
| 445 |
-
4. Choose voice and adjust parameters
|
| 446 |
-
5. Generate your avatar video!
|
| 447 |
-
|
| 448 |
-
**Tips:**
|
| 449 |
-
- Use guidance scale 4-6 for best prompt following
|
| 450 |
-
- Increase audio scale for better lip-sync
|
| 451 |
-
- Clear, descriptive prompts work best
|
| 452 |
""",
|
| 453 |
examples=[
|
| 454 |
[
|
| 455 |
"A professional teacher explaining a mathematical concept with clear gestures",
|
| 456 |
-
"Hello students! Today we're going to learn about calculus and
|
|
|
|
| 457 |
"",
|
| 458 |
-
"https://example.com/teacher.jpg",
|
| 459 |
"21m00Tcm4TlvDq8ikWAM",
|
| 460 |
5.0,
|
| 461 |
3.5,
|
|
@@ -463,7 +798,7 @@ iface = gr.Interface(
|
|
| 463 |
],
|
| 464 |
[
|
| 465 |
"A friendly presenter speaking confidently to an audience",
|
| 466 |
-
"Welcome everyone to our presentation on artificial intelligence
|
| 467 |
"",
|
| 468 |
"",
|
| 469 |
"pNInz6obpgDQGcFmaJgB",
|
|
@@ -471,7 +806,9 @@ iface = gr.Interface(
|
|
| 471 |
4.0,
|
| 472 |
35
|
| 473 |
]
|
| 474 |
-
]
|
|
|
|
|
|
|
| 475 |
)
|
| 476 |
|
| 477 |
# Mount Gradio app
|
|
@@ -480,3 +817,11 @@ app = gr.mount_gradio_app(app, iface, path="/gradio")
|
|
| 480 |
if __name__ == "__main__":
|
| 481 |
import uvicorn
|
| 482 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import tempfile
|
| 4 |
import gradio as gr
|
| 5 |
from fastapi import FastAPI, HTTPException
|
| 6 |
+
from fastapi.staticfiles import StaticFiles
|
| 7 |
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
from pydantic import BaseModel, HttpUrl
|
| 9 |
import subprocess
|
|
|
|
| 26 |
logging.basicConfig(level=logging.INFO)
|
| 27 |
logger = logging.getLogger(__name__)
|
| 28 |
|
| 29 |
+
# Set environment variables for matplotlib, gradio, and huggingface cache
|
| 30 |
+
os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
|
| 31 |
+
os.environ['GRADIO_ALLOW_FLAGGING'] = 'never'
|
| 32 |
+
os.environ['HF_HOME'] = '/tmp/huggingface'
|
| 33 |
+
# Use HF_HOME instead of deprecated TRANSFORMERS_CACHE
|
| 34 |
+
os.environ['HF_DATASETS_CACHE'] = '/tmp/huggingface/datasets'
|
| 35 |
+
os.environ['HUGGINGFACE_HUB_CACHE'] = '/tmp/huggingface/hub'
|
| 36 |
|
| 37 |
+
# FastAPI app will be created after lifespan is defined
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# Create directories with proper permissions
|
| 42 |
+
os.makedirs("outputs", exist_ok=True)
|
| 43 |
+
os.makedirs("/tmp/matplotlib", exist_ok=True)
|
| 44 |
+
os.makedirs("/tmp/huggingface", exist_ok=True)
|
| 45 |
+
os.makedirs("/tmp/huggingface/transformers", exist_ok=True)
|
| 46 |
+
os.makedirs("/tmp/huggingface/datasets", exist_ok=True)
|
| 47 |
+
os.makedirs("/tmp/huggingface/hub", exist_ok=True)
|
| 48 |
+
|
| 49 |
+
# Mount static files for serving generated videos
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def get_video_url(output_path: str) -> str:
|
| 53 |
+
"""Convert local file path to accessible URL"""
|
| 54 |
+
try:
|
| 55 |
+
from pathlib import Path
|
| 56 |
+
filename = Path(output_path).name
|
| 57 |
+
|
| 58 |
+
# For HuggingFace Spaces, construct the URL
|
| 59 |
+
base_url = "https://bravedims-ai-avatar-chat.hf.space"
|
| 60 |
+
video_url = f"{base_url}/outputs/{filename}"
|
| 61 |
+
logger.info(f"Generated video URL: {video_url}")
|
| 62 |
+
return video_url
|
| 63 |
+
except Exception as e:
|
| 64 |
+
logger.error(f"Error creating video URL: {e}")
|
| 65 |
+
return output_path # Fallback to original path
|
| 66 |
|
| 67 |
# Pydantic models for request/response
|
| 68 |
class GenerateRequest(BaseModel):
|
| 69 |
prompt: str
|
| 70 |
text_to_speech: Optional[str] = None # Text to convert to speech
|
| 71 |
+
audio_url: Optional[HttpUrl] = None # Direct audio URL
|
| 72 |
+
voice_id: Optional[str] = "21m00Tcm4TlvDq8ikWAM" # Voice profile ID
|
| 73 |
image_url: Optional[HttpUrl] = None
|
| 74 |
guidance_scale: float = 5.0
|
| 75 |
audio_scale: float = 3.0
|
|
|
|
| 82 |
output_path: str
|
| 83 |
processing_time: float
|
| 84 |
audio_generated: bool = False
|
| 85 |
+
tts_method: Optional[str] = None
|
| 86 |
|
| 87 |
+
# Try to import TTS clients, but make them optional
|
| 88 |
+
try:
|
| 89 |
+
from advanced_tts_client import AdvancedTTSClient
|
| 90 |
+
ADVANCED_TTS_AVAILABLE = True
|
| 91 |
+
logger.info("SUCCESS: Advanced TTS client available")
|
| 92 |
+
except ImportError as e:
|
| 93 |
+
ADVANCED_TTS_AVAILABLE = False
|
| 94 |
+
logger.warning(f"WARNING: Advanced TTS client not available: {e}")
|
| 95 |
+
|
| 96 |
+
# Always import the robust fallback
|
| 97 |
+
try:
|
| 98 |
+
from robust_tts_client import RobustTTSClient
|
| 99 |
+
ROBUST_TTS_AVAILABLE = True
|
| 100 |
+
logger.info("SUCCESS: Robust TTS client available")
|
| 101 |
+
except ImportError as e:
|
| 102 |
+
ROBUST_TTS_AVAILABLE = False
|
| 103 |
+
logger.error(f"ERROR: Robust TTS client not available: {e}")
|
| 104 |
+
|
| 105 |
+
class TTSManager:
|
| 106 |
+
"""Manages multiple TTS clients with fallback chain"""
|
| 107 |
+
|
| 108 |
+
def __init__(self):
|
| 109 |
+
# Initialize TTS clients based on availability
|
| 110 |
+
self.advanced_tts = None
|
| 111 |
+
self.robust_tts = None
|
| 112 |
+
self.clients_loaded = False
|
| 113 |
|
| 114 |
+
if ADVANCED_TTS_AVAILABLE:
|
| 115 |
+
try:
|
| 116 |
+
self.advanced_tts = AdvancedTTSClient()
|
| 117 |
+
logger.info("SUCCESS: Advanced TTS client initialized")
|
| 118 |
+
except Exception as e:
|
| 119 |
+
logger.warning(f"WARNING: Advanced TTS client initialization failed: {e}")
|
| 120 |
|
| 121 |
+
if ROBUST_TTS_AVAILABLE:
|
| 122 |
+
try:
|
| 123 |
+
self.robust_tts = RobustTTSClient()
|
| 124 |
+
logger.info("SUCCESS: Robust TTS client initialized")
|
| 125 |
+
except Exception as e:
|
| 126 |
+
logger.error(f"ERROR: Robust TTS client initialization failed: {e}")
|
| 127 |
+
|
| 128 |
+
if not self.advanced_tts and not self.robust_tts:
|
| 129 |
+
logger.error("ERROR: No TTS clients available!")
|
| 130 |
+
|
| 131 |
+
async def load_models(self):
|
| 132 |
+
"""Load TTS models"""
|
| 133 |
+
try:
|
| 134 |
+
logger.info("Loading TTS models...")
|
| 135 |
+
|
| 136 |
+
# Try to load advanced TTS first
|
| 137 |
+
if self.advanced_tts:
|
| 138 |
+
try:
|
| 139 |
+
logger.info("[PROCESS] Loading advanced TTS models (this may take a few minutes)...")
|
| 140 |
+
success = await self.advanced_tts.load_models()
|
| 141 |
+
if success:
|
| 142 |
+
logger.info("SUCCESS: Advanced TTS models loaded successfully")
|
| 143 |
+
else:
|
| 144 |
+
logger.warning("WARNING: Advanced TTS models failed to load")
|
| 145 |
+
except Exception as e:
|
| 146 |
+
logger.warning(f"WARNING: Advanced TTS loading error: {e}")
|
| 147 |
+
|
| 148 |
+
# Always ensure robust TTS is available
|
| 149 |
+
if self.robust_tts:
|
| 150 |
+
try:
|
| 151 |
+
await self.robust_tts.load_model()
|
| 152 |
+
logger.info("SUCCESS: Robust TTS fallback ready")
|
| 153 |
+
except Exception as e:
|
| 154 |
+
logger.error(f"ERROR: Robust TTS loading failed: {e}")
|
| 155 |
+
|
| 156 |
+
self.clients_loaded = True
|
| 157 |
+
return True
|
| 158 |
+
|
| 159 |
+
except Exception as e:
|
| 160 |
+
logger.error(f"ERROR: TTS manager initialization failed: {e}")
|
| 161 |
+
return False
|
| 162 |
+
|
| 163 |
+
async def text_to_speech(self, text: str, voice_id: Optional[str] = None) -> tuple[str, str]:
|
| 164 |
+
"""
|
| 165 |
+
Convert text to speech with fallback chain
|
| 166 |
+
Returns: (audio_file_path, method_used)
|
| 167 |
+
"""
|
| 168 |
+
if not self.clients_loaded:
|
| 169 |
+
logger.info("TTS models not loaded, loading now...")
|
| 170 |
+
await self.load_models()
|
| 171 |
+
|
| 172 |
+
logger.info(f"Generating speech: {text[:50]}...")
|
| 173 |
+
logger.info(f"Voice ID: {voice_id}")
|
| 174 |
+
|
| 175 |
+
# Try Advanced TTS first (Facebook VITS / SpeechT5)
|
| 176 |
+
if self.advanced_tts:
|
| 177 |
+
try:
|
| 178 |
+
audio_path = await self.advanced_tts.text_to_speech(text, voice_id)
|
| 179 |
+
return audio_path, "Facebook VITS/SpeechT5"
|
| 180 |
+
except Exception as advanced_error:
|
| 181 |
+
logger.warning(f"Advanced TTS failed: {advanced_error}")
|
| 182 |
|
| 183 |
+
# Fall back to robust TTS
|
| 184 |
+
if self.robust_tts:
|
| 185 |
+
try:
|
| 186 |
+
logger.info("Falling back to robust TTS...")
|
| 187 |
+
audio_path = await self.robust_tts.text_to_speech(text, voice_id)
|
| 188 |
+
return audio_path, "Robust TTS (Fallback)"
|
| 189 |
+
except Exception as robust_error:
|
| 190 |
+
logger.error(f"Robust TTS also failed: {robust_error}")
|
| 191 |
+
|
| 192 |
+
# If we get here, all methods failed
|
| 193 |
+
logger.error("All TTS methods failed!")
|
| 194 |
+
raise HTTPException(
|
| 195 |
+
status_code=500,
|
| 196 |
+
detail="All TTS methods failed. Please check system configuration."
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
async def get_available_voices(self):
|
| 200 |
+
"""Get available voice configurations"""
|
| 201 |
+
try:
|
| 202 |
+
if self.advanced_tts and hasattr(self.advanced_tts, 'get_available_voices'):
|
| 203 |
+
return await self.advanced_tts.get_available_voices()
|
| 204 |
+
except:
|
| 205 |
+
pass
|
| 206 |
+
|
| 207 |
+
# Return default voices if advanced TTS not available
|
| 208 |
+
return {
|
| 209 |
+
"21m00Tcm4TlvDq8ikWAM": "Female (Neutral)",
|
| 210 |
+
"pNInz6obpgDQGcFmaJgB": "Male (Professional)",
|
| 211 |
+
"EXAVITQu4vr4xnSDxMaL": "Female (Sweet)",
|
| 212 |
+
"ErXwobaYiN019PkySvjV": "Male (Professional)",
|
| 213 |
+
"TxGEqnHWrfGW9XjX": "Male (Deep)",
|
| 214 |
+
"yoZ06aMxZJJ28mfd3POQ": "Unisex (Friendly)",
|
| 215 |
+
"AZnzlk1XvdvUeBnXmlld": "Female (Strong)"
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
def get_tts_info(self):
|
| 219 |
+
"""Get TTS system information"""
|
| 220 |
+
info = {
|
| 221 |
+
"clients_loaded": self.clients_loaded,
|
| 222 |
+
"advanced_tts_available": self.advanced_tts is not None,
|
| 223 |
+
"robust_tts_available": self.robust_tts is not None,
|
| 224 |
+
"primary_method": "Robust TTS"
|
| 225 |
}
|
| 226 |
|
| 227 |
try:
|
| 228 |
+
if self.advanced_tts and hasattr(self.advanced_tts, 'get_model_info'):
|
| 229 |
+
advanced_info = self.advanced_tts.get_model_info()
|
| 230 |
+
info.update({
|
| 231 |
+
"advanced_tts_loaded": advanced_info.get("models_loaded", False),
|
| 232 |
+
"transformers_available": advanced_info.get("transformers_available", False),
|
| 233 |
+
"primary_method": "Facebook VITS/SpeechT5" if advanced_info.get("models_loaded") else "Robust TTS",
|
| 234 |
+
"device": advanced_info.get("device", "cpu"),
|
| 235 |
+
"vits_available": advanced_info.get("vits_available", False),
|
| 236 |
+
"speecht5_available": advanced_info.get("speecht5_available", False)
|
| 237 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
except Exception as e:
|
| 239 |
+
logger.debug(f"Could not get advanced TTS info: {e}")
|
| 240 |
+
|
| 241 |
+
return info
|
| 242 |
+
|
| 243 |
+
# Import the VIDEO-FOCUSED engine
|
| 244 |
+
try:
|
| 245 |
+
from omniavatar_video_engine import video_engine
|
| 246 |
+
VIDEO_ENGINE_AVAILABLE = True
|
| 247 |
+
logger.info("SUCCESS: OmniAvatar Video Engine available")
|
| 248 |
+
except ImportError as e:
|
| 249 |
+
VIDEO_ENGINE_AVAILABLE = False
|
| 250 |
+
logger.error(f"ERROR: OmniAvatar Video Engine not available: {e}")
|
| 251 |
|
| 252 |
class OmniAvatarAPI:
|
| 253 |
def __init__(self):
|
| 254 |
self.model_loaded = False
|
| 255 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 256 |
+
self.tts_manager = TTSManager()
|
| 257 |
logger.info(f"Using device: {self.device}")
|
| 258 |
+
logger.info("Initialized with robust TTS system")
|
| 259 |
|
| 260 |
def load_model(self):
|
| 261 |
+
"""Load the OmniAvatar model - now more flexible"""
|
| 262 |
try:
|
| 263 |
+
# Check if models are downloaded (but don't require them)
|
| 264 |
model_paths = [
|
| 265 |
"./pretrained_models/Wan2.1-T2V-14B",
|
| 266 |
"./pretrained_models/OmniAvatar-14B",
|
| 267 |
"./pretrained_models/wav2vec2-base-960h"
|
| 268 |
]
|
| 269 |
|
| 270 |
+
missing_models = []
|
| 271 |
for path in model_paths:
|
| 272 |
if not os.path.exists(path):
|
| 273 |
+
missing_models.append(path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
|
| 275 |
+
if missing_models:
|
| 276 |
+
logger.warning("WARNING: Some OmniAvatar models not found:")
|
| 277 |
+
for model in missing_models:
|
| 278 |
+
logger.warning(f" - {model}")
|
| 279 |
+
logger.info("TIP: App will run in TTS-only mode (no video generation)")
|
| 280 |
+
logger.info("TIP: To enable full avatar generation, download the required models")
|
| 281 |
+
|
| 282 |
+
# Set as loaded but in limited mode
|
| 283 |
+
self.model_loaded = False # Video generation disabled
|
| 284 |
+
return True # But app can still run
|
| 285 |
+
else:
|
| 286 |
+
self.model_loaded = True
|
| 287 |
+
logger.info("SUCCESS: All OmniAvatar models found - full functionality enabled")
|
| 288 |
+
return True
|
| 289 |
+
|
| 290 |
except Exception as e:
|
| 291 |
+
logger.error(f"Error checking models: {str(e)}")
|
| 292 |
+
logger.info("TIP: Continuing in TTS-only mode")
|
| 293 |
+
self.model_loaded = False
|
| 294 |
+
return True # Continue running
|
| 295 |
|
| 296 |
async def download_file(self, url: str, suffix: str = "") -> str:
|
| 297 |
"""Download file from URL and save to temporary location"""
|
|
|
|
| 321 |
"""Validate if URL is likely an audio file"""
|
| 322 |
try:
|
| 323 |
parsed = urlparse(url)
|
| 324 |
+
# Check for common audio file extensions
|
| 325 |
+
audio_extensions = ['.mp3', '.wav', '.m4a', '.ogg', '.aac', '.flac']
|
| 326 |
is_audio_ext = any(parsed.path.lower().endswith(ext) for ext in audio_extensions)
|
|
|
|
| 327 |
|
| 328 |
+
return is_audio_ext or 'audio' in url.lower()
|
| 329 |
except:
|
| 330 |
return False
|
| 331 |
|
|
|
|
| 338 |
except:
|
| 339 |
return False
|
| 340 |
|
| 341 |
+
async def generate_avatar(self, request: GenerateRequest) -> tuple[str, float, bool, str]:
|
| 342 |
+
"""Generate avatar VIDEO - PRIMARY FUNCTIONALITY"""
|
| 343 |
+
import time
|
| 344 |
+
start_time = time.time()
|
| 345 |
+
audio_generated = False
|
| 346 |
+
method_used = "Unknown"
|
| 347 |
+
|
| 348 |
+
logger.info("[VIDEO] STARTING AVATAR VIDEO GENERATION")
|
| 349 |
+
logger.info(f"[INFO] Prompt: {request.prompt}")
|
| 350 |
+
|
| 351 |
+
if VIDEO_ENGINE_AVAILABLE:
|
| 352 |
+
try:
|
| 353 |
+
# PRIORITIZE VIDEO GENERATION
|
| 354 |
+
logger.info("[TARGET] Using OmniAvatar Video Engine for FULL video generation")
|
| 355 |
+
|
| 356 |
+
# Handle audio source
|
| 357 |
+
audio_path = None
|
| 358 |
+
if request.text_to_speech:
|
| 359 |
+
logger.info("[MIC] Generating audio from text...")
|
| 360 |
+
audio_path, method_used = await self.tts_manager.text_to_speech(
|
| 361 |
+
request.text_to_speech,
|
| 362 |
+
request.voice_id or "21m00Tcm4TlvDq8ikWAM"
|
| 363 |
+
)
|
| 364 |
+
audio_generated = True
|
| 365 |
+
elif request.audio_url:
|
| 366 |
+
logger.info("📥 Downloading audio from URL...")
|
| 367 |
+
audio_path = await self.download_file(str(request.audio_url), ".mp3")
|
| 368 |
+
method_used = "External Audio"
|
| 369 |
+
else:
|
| 370 |
+
raise HTTPException(status_code=400, detail="Either text_to_speech or audio_url required for video generation")
|
| 371 |
+
|
| 372 |
+
# Handle image if provided
|
| 373 |
+
image_path = None
|
| 374 |
+
if request.image_url:
|
| 375 |
+
logger.info("[IMAGE] Downloading reference image...")
|
| 376 |
+
parsed = urlparse(str(request.image_url))
|
| 377 |
+
ext = os.path.splitext(parsed.path)[1] or ".jpg"
|
| 378 |
+
image_path = await self.download_file(str(request.image_url), ext)
|
| 379 |
+
|
| 380 |
+
# GENERATE VIDEO using OmniAvatar engine
|
| 381 |
+
logger.info("[VIDEO] Generating avatar video with adaptive body animation...")
|
| 382 |
+
video_path, generation_time = video_engine.generate_avatar_video(
|
| 383 |
+
prompt=request.prompt,
|
| 384 |
+
audio_path=audio_path,
|
| 385 |
+
image_path=image_path,
|
| 386 |
+
guidance_scale=request.guidance_scale,
|
| 387 |
+
audio_scale=request.audio_scale,
|
| 388 |
+
num_steps=request.num_steps
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
processing_time = time.time() - start_time
|
| 392 |
+
logger.info(f"SUCCESS: VIDEO GENERATED successfully in {processing_time:.1f}s")
|
| 393 |
+
|
| 394 |
+
# Cleanup temporary files
|
| 395 |
+
if audio_path and os.path.exists(audio_path):
|
| 396 |
+
os.unlink(audio_path)
|
| 397 |
+
if image_path and os.path.exists(image_path):
|
| 398 |
+
os.unlink(image_path)
|
| 399 |
+
|
| 400 |
+
return video_path, processing_time, audio_generated, f"OmniAvatar Video Generation ({method_used})"
|
| 401 |
+
|
| 402 |
+
except Exception as e:
|
| 403 |
+
logger.error(f"ERROR: Video generation failed: {e}")
|
| 404 |
+
# For a VIDEO generation app, we should NOT fall back to audio-only
|
| 405 |
+
# Instead, provide clear guidance
|
| 406 |
+
if "models" in str(e).lower():
|
| 407 |
+
raise HTTPException(
|
| 408 |
+
status_code=503,
|
| 409 |
+
detail=f"Video generation requires OmniAvatar models (~30GB). Please run model download script. Error: {str(e)}"
|
| 410 |
+
)
|
| 411 |
+
else:
|
| 412 |
+
raise HTTPException(status_code=500, detail=f"Video generation failed: {str(e)}")
|
| 413 |
+
|
| 414 |
+
# If video engine not available, this is a critical error for a VIDEO app
|
| 415 |
+
raise HTTPException(
|
| 416 |
+
status_code=503,
|
| 417 |
+
detail="Video generation engine not available. This application requires OmniAvatar models for video generation."
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
async def generate_avatar_BACKUP(self, request: GenerateRequest) -> tuple[str, float, bool, str]:
|
| 421 |
+
"""OLD TTS-ONLY METHOD - kept as backup reference
|
| 422 |
+
"""Generate avatar video from prompt and audio/text - now handles missing models"""
|
| 423 |
import time
|
| 424 |
start_time = time.time()
|
| 425 |
audio_generated = False
|
| 426 |
+
tts_method = None
|
| 427 |
|
| 428 |
try:
|
| 429 |
+
# Check if video generation is available
|
| 430 |
+
if not self.model_loaded:
|
| 431 |
+
logger.info("🎙️ Running in TTS-only mode (OmniAvatar models not available)")
|
| 432 |
+
|
| 433 |
+
# Only generate audio, no video
|
| 434 |
+
if request.text_to_speech:
|
| 435 |
+
logger.info(f"Generating speech from text: {request.text_to_speech[:50]}...")
|
| 436 |
+
audio_path, tts_method = await self.tts_manager.text_to_speech(
|
| 437 |
+
request.text_to_speech,
|
| 438 |
+
request.voice_id or "21m00Tcm4TlvDq8ikWAM"
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
# Return the audio file as the "output"
|
| 442 |
+
processing_time = time.time() - start_time
|
| 443 |
+
logger.info(f"SUCCESS: TTS completed in {processing_time:.1f}s using {tts_method}")
|
| 444 |
+
return audio_path, processing_time, True, f"{tts_method} (TTS-only mode)"
|
| 445 |
+
else:
|
| 446 |
+
raise HTTPException(
|
| 447 |
+
status_code=503,
|
| 448 |
+
detail="Video generation unavailable. OmniAvatar models not found. Only TTS from text is supported."
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
# Original video generation logic (when models are available)
|
| 452 |
# Determine audio source
|
| 453 |
audio_path = None
|
| 454 |
|
| 455 |
if request.text_to_speech:
|
| 456 |
+
# Generate speech from text using TTS manager
|
| 457 |
logger.info(f"Generating speech from text: {request.text_to_speech[:50]}...")
|
| 458 |
+
audio_path, tts_method = await self.tts_manager.text_to_speech(
|
| 459 |
request.text_to_speech,
|
| 460 |
request.voice_id or "21m00Tcm4TlvDq8ikWAM"
|
| 461 |
)
|
| 462 |
audio_generated = True
|
| 463 |
|
| 464 |
+
elif request.audio_url:
|
| 465 |
# Download audio from provided URL
|
| 466 |
+
logger.info(f"Downloading audio from URL: {request.audio_url}")
|
| 467 |
+
if not self.validate_audio_url(str(request.audio_url)):
|
| 468 |
+
logger.warning(f"Audio URL may not be valid: {request.audio_url}")
|
| 469 |
|
| 470 |
+
audio_path = await self.download_file(str(request.audio_url), ".mp3")
|
| 471 |
+
tts_method = "External Audio URL"
|
| 472 |
|
| 473 |
else:
|
| 474 |
raise HTTPException(
|
| 475 |
status_code=400,
|
| 476 |
+
detail="Either text_to_speech or audio_url must be provided"
|
| 477 |
)
|
| 478 |
|
| 479 |
# Download image if provided
|
|
|
|
| 536 |
video_files.sort(key=lambda x: os.path.getmtime(os.path.join(output_dir, x)), reverse=True)
|
| 537 |
output_path = os.path.join(output_dir, video_files[0])
|
| 538 |
processing_time = time.time() - start_time
|
| 539 |
+
return output_path, processing_time, audio_generated, tts_method
|
| 540 |
|
| 541 |
raise Exception("No output video generated")
|
| 542 |
|
|
|
|
| 558 |
# Initialize API
|
| 559 |
omni_api = OmniAvatarAPI()
|
| 560 |
|
| 561 |
+
# Use FastAPI lifespan instead of deprecated on_event
|
| 562 |
+
from contextlib import asynccontextmanager
|
| 563 |
+
|
| 564 |
+
@asynccontextmanager
|
| 565 |
+
async def lifespan(app: FastAPI):
|
| 566 |
+
# Startup
|
| 567 |
success = omni_api.load_model()
|
| 568 |
if not success:
|
| 569 |
+
logger.warning("WARNING: OmniAvatar model loading failed - running in limited mode")
|
| 570 |
+
|
| 571 |
+
# Load TTS models
|
| 572 |
+
try:
|
| 573 |
+
await omni_api.tts_manager.load_models()
|
| 574 |
+
logger.info("SUCCESS: TTS models initialization completed")
|
| 575 |
+
except Exception as e:
|
| 576 |
+
logger.error(f"ERROR: TTS initialization failed: {e}")
|
| 577 |
+
|
| 578 |
+
yield
|
| 579 |
+
|
| 580 |
+
# Shutdown (if needed)
|
| 581 |
+
logger.info("Application shutting down...")
|
| 582 |
+
|
| 583 |
+
# Create FastAPI app WITH lifespan parameter
|
| 584 |
+
app = FastAPI(
|
| 585 |
+
title="OmniAvatar-14B API with Advanced TTS",
|
| 586 |
+
version="1.0.0",
|
| 587 |
+
lifespan=lifespan
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
# Add CORS middleware
|
| 591 |
+
app.add_middleware(
|
| 592 |
+
CORSMiddleware,
|
| 593 |
+
allow_origins=["*"],
|
| 594 |
+
allow_credentials=True,
|
| 595 |
+
allow_methods=["*"],
|
| 596 |
+
allow_headers=["*"],
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
# Mount static files for serving generated videos
|
| 600 |
+
app.mount("/outputs", StaticFiles(directory="outputs"), name="outputs")
|
| 601 |
|
| 602 |
@app.get("/health")
|
| 603 |
async def health_check():
|
| 604 |
"""Health check endpoint"""
|
| 605 |
+
tts_info = omni_api.tts_manager.get_tts_info()
|
| 606 |
+
|
| 607 |
return {
|
| 608 |
"status": "healthy",
|
| 609 |
"model_loaded": omni_api.model_loaded,
|
| 610 |
+
"video_generation_available": omni_api.model_loaded,
|
| 611 |
+
"tts_only_mode": not omni_api.model_loaded,
|
| 612 |
"device": omni_api.device,
|
|
|
|
|
|
|
| 613 |
"supports_text_to_speech": True,
|
| 614 |
+
"supports_image_urls": omni_api.model_loaded,
|
| 615 |
+
"supports_audio_urls": omni_api.model_loaded,
|
| 616 |
+
"tts_system": "Advanced TTS with Robust Fallback",
|
| 617 |
+
"advanced_tts_available": ADVANCED_TTS_AVAILABLE,
|
| 618 |
+
"robust_tts_available": ROBUST_TTS_AVAILABLE,
|
| 619 |
+
**tts_info
|
| 620 |
}
|
| 621 |
|
| 622 |
+
@app.get("/voices")
|
| 623 |
+
async def get_voices():
|
| 624 |
+
"""Get available voice configurations"""
|
| 625 |
+
try:
|
| 626 |
+
voices = await omni_api.tts_manager.get_available_voices()
|
| 627 |
+
return {"voices": voices}
|
| 628 |
+
except Exception as e:
|
| 629 |
+
logger.error(f"Error getting voices: {e}")
|
| 630 |
+
return {"error": str(e)}
|
| 631 |
+
|
| 632 |
@app.post("/generate", response_model=GenerateResponse)
|
| 633 |
async def generate_avatar(request: GenerateRequest):
|
| 634 |
"""Generate avatar video from prompt, text/audio, and optional image URL"""
|
| 635 |
|
|
|
|
|
|
|
|
|
|
| 636 |
logger.info(f"Generating avatar with prompt: {request.prompt}")
|
| 637 |
if request.text_to_speech:
|
| 638 |
logger.info(f"Text to speech: {request.text_to_speech[:100]}...")
|
| 639 |
logger.info(f"Voice ID: {request.voice_id}")
|
| 640 |
+
if request.audio_url:
|
| 641 |
+
logger.info(f"Audio URL: {request.audio_url}")
|
| 642 |
if request.image_url:
|
| 643 |
logger.info(f"Image URL: {request.image_url}")
|
| 644 |
|
| 645 |
try:
|
| 646 |
+
output_path, processing_time, audio_generated, tts_method = await omni_api.generate_avatar(request)
|
| 647 |
|
| 648 |
return GenerateResponse(
|
| 649 |
+
message="Generation completed successfully" + (" (TTS-only mode)" if not omni_api.model_loaded else ""),
|
| 650 |
+
output_path=get_video_url(output_path) if omni_api.model_loaded else output_path,
|
| 651 |
processing_time=processing_time,
|
| 652 |
+
audio_generated=audio_generated,
|
| 653 |
+
tts_method=tts_method
|
| 654 |
)
|
| 655 |
|
| 656 |
except HTTPException:
|
|
|
|
| 659 |
logger.error(f"Unexpected error: {e}")
|
| 660 |
raise HTTPException(status_code=500, detail=f"Unexpected error: {e}")
|
| 661 |
|
| 662 |
+
# Enhanced Gradio interface
|
| 663 |
def gradio_generate(prompt, text_to_speech, audio_url, image_url, voice_id, guidance_scale, audio_scale, num_steps):
|
| 664 |
+
"""Gradio interface wrapper with robust TTS support"""
|
|
|
|
|
|
|
|
|
|
| 665 |
try:
|
| 666 |
# Create request object
|
| 667 |
request_data = {
|
|
|
|
| 676 |
request_data["text_to_speech"] = text_to_speech
|
| 677 |
request_data["voice_id"] = voice_id or "21m00Tcm4TlvDq8ikWAM"
|
| 678 |
elif audio_url and audio_url.strip():
|
| 679 |
+
if omni_api.model_loaded:
|
| 680 |
+
request_data["audio_url"] = audio_url
|
| 681 |
+
else:
|
| 682 |
+
return "Error: Audio URL input requires full OmniAvatar models. Please use text-to-speech instead."
|
| 683 |
else:
|
| 684 |
return "Error: Please provide either text to speech or audio URL"
|
| 685 |
|
| 686 |
if image_url and image_url.strip():
|
| 687 |
+
if omni_api.model_loaded:
|
| 688 |
+
request_data["image_url"] = image_url
|
| 689 |
+
else:
|
| 690 |
+
return "Error: Image URL input requires full OmniAvatar models for video generation."
|
| 691 |
|
| 692 |
request = GenerateRequest(**request_data)
|
| 693 |
|
| 694 |
# Run async function in sync context
|
| 695 |
loop = asyncio.new_event_loop()
|
| 696 |
asyncio.set_event_loop(loop)
|
| 697 |
+
output_path, processing_time, audio_generated, tts_method = loop.run_until_complete(omni_api.generate_avatar(request))
|
| 698 |
loop.close()
|
| 699 |
|
| 700 |
+
success_message = f"SUCCESS: Generation completed in {processing_time:.1f}s using {tts_method}"
|
| 701 |
+
print(success_message)
|
| 702 |
+
|
| 703 |
+
if omni_api.model_loaded:
|
| 704 |
+
return output_path
|
| 705 |
+
else:
|
| 706 |
+
return f"🎙️ TTS Audio generated successfully using {tts_method}\nFile: {output_path}\n\nWARNING: Video generation unavailable (OmniAvatar models not found)"
|
| 707 |
|
| 708 |
except Exception as e:
|
| 709 |
logger.error(f"Gradio generation error: {e}")
|
| 710 |
return f"Error: {str(e)}"
|
| 711 |
|
| 712 |
+
# Create Gradio interface
|
| 713 |
+
mode_info = " (TTS-Only Mode)" if not omni_api.model_loaded else ""
|
| 714 |
+
description_extra = """
|
| 715 |
+
WARNING: Running in TTS-Only Mode - OmniAvatar models not found. Only text-to-speech generation is available.
|
| 716 |
+
To enable full video generation, the required model files need to be downloaded.
|
| 717 |
+
""" if not omni_api.model_loaded else ""
|
| 718 |
+
|
| 719 |
iface = gr.Interface(
|
| 720 |
fn=gradio_generate,
|
| 721 |
inputs=[
|
|
|
|
| 726 |
),
|
| 727 |
gr.Textbox(
|
| 728 |
label="Text to Speech",
|
| 729 |
+
placeholder="Enter text to convert to speech",
|
| 730 |
lines=3,
|
| 731 |
+
info="Will use best available TTS system (Advanced or Fallback)"
|
| 732 |
),
|
| 733 |
gr.Textbox(
|
| 734 |
label="OR Audio URL",
|
| 735 |
+
placeholder="https://example.com/audio.mp3",
|
| 736 |
+
info="Direct URL to audio file (requires full models)" if not omni_api.model_loaded else "Direct URL to audio file"
|
| 737 |
),
|
| 738 |
gr.Textbox(
|
| 739 |
label="Image URL (Optional)",
|
| 740 |
placeholder="https://example.com/image.jpg",
|
| 741 |
+
info="Direct URL to reference image (requires full models)" if not omni_api.model_loaded else "Direct URL to reference image"
|
| 742 |
),
|
| 743 |
gr.Dropdown(
|
| 744 |
+
choices=[
|
| 745 |
+
"21m00Tcm4TlvDq8ikWAM",
|
| 746 |
+
"pNInz6obpgDQGcFmaJgB",
|
| 747 |
+
"EXAVITQu4vr4xnSDxMaL",
|
| 748 |
+
"ErXwobaYiN019PkySvjV",
|
| 749 |
+
"TxGEqnHWrfGW9XjX",
|
| 750 |
+
"yoZ06aMxZJJ28mfd3POQ",
|
| 751 |
+
"AZnzlk1XvdvUeBnXmlld"
|
| 752 |
+
],
|
| 753 |
value="21m00Tcm4TlvDq8ikWAM",
|
| 754 |
+
label="Voice Profile",
|
| 755 |
+
info="Choose voice characteristics for TTS generation"
|
| 756 |
),
|
| 757 |
gr.Slider(minimum=1, maximum=10, value=5.0, label="Guidance Scale", info="4-6 recommended"),
|
| 758 |
gr.Slider(minimum=1, maximum=10, value=3.0, label="Audio Scale", info="Higher values = better lip-sync"),
|
| 759 |
gr.Slider(minimum=10, maximum=100, value=30, step=1, label="Number of Steps", info="20-50 recommended")
|
| 760 |
],
|
| 761 |
+
outputs=gr.Video(label="Generated Avatar Video") if omni_api.model_loaded else gr.Textbox(label="TTS Output"),
|
| 762 |
+
title="[VIDEO] OmniAvatar-14B - Avatar Video Generation with Adaptive Body Animation",
|
| 763 |
+
description=f"""
|
| 764 |
+
Generate avatar videos with lip-sync from text prompts and speech using robust TTS system.
|
| 765 |
+
|
| 766 |
+
{description_extra}
|
| 767 |
+
|
| 768 |
+
**Robust TTS Architecture**
|
| 769 |
+
- **Primary**: Advanced TTS (Facebook VITS & SpeechT5) if available
|
| 770 |
+
- **Fallback**: Robust tone generation for 100% reliability
|
| 771 |
+
- **Automatic**: Seamless switching between methods
|
| 772 |
|
| 773 |
**Features:**
|
| 774 |
+
- **Guaranteed Generation**: Always produces audio output
|
| 775 |
+
- **No Dependencies**: Works even without advanced models
|
| 776 |
+
- **High Availability**: Multiple fallback layers
|
| 777 |
+
- **Voice Profiles**: Multiple voice characteristics
|
| 778 |
+
- **Audio URL Support**: Use external audio files {"(full models required)" if not omni_api.model_loaded else ""}
|
| 779 |
+
- **Image URL Support**: Reference images for characters {"(full models required)" if not omni_api.model_loaded else ""}
|
| 780 |
|
| 781 |
**Usage:**
|
| 782 |
1. Enter a character description in the prompt
|
| 783 |
+
2. **Enter text for speech generation** (recommended in current mode)
|
| 784 |
+
3. {"Optionally add reference image/audio URLs (requires full models)" if not omni_api.model_loaded else "Optionally add reference image URL and choose audio source"}
|
| 785 |
+
4. Choose voice profile and adjust parameters
|
| 786 |
+
5. Generate your {"audio" if not omni_api.model_loaded else "avatar video"}!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 787 |
""",
|
| 788 |
examples=[
|
| 789 |
[
|
| 790 |
"A professional teacher explaining a mathematical concept with clear gestures",
|
| 791 |
+
"Hello students! Today we're going to learn about calculus and derivatives.",
|
| 792 |
+
"",
|
| 793 |
"",
|
|
|
|
| 794 |
"21m00Tcm4TlvDq8ikWAM",
|
| 795 |
5.0,
|
| 796 |
3.5,
|
|
|
|
| 798 |
],
|
| 799 |
[
|
| 800 |
"A friendly presenter speaking confidently to an audience",
|
| 801 |
+
"Welcome everyone to our presentation on artificial intelligence!",
|
| 802 |
"",
|
| 803 |
"",
|
| 804 |
"pNInz6obpgDQGcFmaJgB",
|
|
|
|
| 806 |
4.0,
|
| 807 |
35
|
| 808 |
]
|
| 809 |
+
],
|
| 810 |
+
allow_flagging="never",
|
| 811 |
+
flagging_dir="/tmp/gradio_flagged"
|
| 812 |
)
|
| 813 |
|
| 814 |
# Mount Gradio app
|
|
|
|
| 817 |
if __name__ == "__main__":
|
| 818 |
import uvicorn
|
| 819 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 820 |
+
|
| 821 |
+
|
| 822 |
+
|
| 823 |
+
|
| 824 |
+
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
|
app_fixed.py
ADDED
|
@@ -0,0 +1,828 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import tempfile
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from fastapi import FastAPI, HTTPException
|
| 6 |
+
from fastapi.staticfiles import StaticFiles
|
| 7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
+
from pydantic import BaseModel, HttpUrl
|
| 9 |
+
import subprocess
|
| 10 |
+
import json
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
import logging
|
| 13 |
+
import requests
|
| 14 |
+
from urllib.parse import urlparse
|
| 15 |
+
from PIL import Image
|
| 16 |
+
import io
|
| 17 |
+
from typing import Optional
|
| 18 |
+
import aiohttp
|
| 19 |
+
import asyncio
|
| 20 |
+
from dotenv import load_dotenv
|
| 21 |
+
|
| 22 |
+
# Load environment variables
|
| 23 |
+
load_dotenv()
|
| 24 |
+
|
| 25 |
+
# Set up logging
|
| 26 |
+
logging.basicConfig(level=logging.INFO)
|
| 27 |
+
logger = logging.getLogger(__name__)
|
| 28 |
+
|
| 29 |
+
# Set environment variables for matplotlib, gradio, and huggingface cache
|
| 30 |
+
os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
|
| 31 |
+
os.environ['GRADIO_ALLOW_FLAGGING'] = 'never'
|
| 32 |
+
os.environ['HF_HOME'] = '/tmp/huggingface'
|
| 33 |
+
# Use HF_HOME instead of deprecated TRANSFORMERS_CACHE
|
| 34 |
+
os.environ['HF_DATASETS_CACHE'] = '/tmp/huggingface/datasets'
|
| 35 |
+
os.environ['HUGGINGFACE_HUB_CACHE'] = '/tmp/huggingface/hub'
|
| 36 |
+
|
| 37 |
+
# FastAPI app will be created after lifespan is defined
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# Create directories with proper permissions
|
| 42 |
+
os.makedirs("outputs", exist_ok=True)
|
| 43 |
+
os.makedirs("/tmp/matplotlib", exist_ok=True)
|
| 44 |
+
os.makedirs("/tmp/huggingface", exist_ok=True)
|
| 45 |
+
os.makedirs("/tmp/huggingface/transformers", exist_ok=True)
|
| 46 |
+
os.makedirs("/tmp/huggingface/datasets", exist_ok=True)
|
| 47 |
+
os.makedirs("/tmp/huggingface/hub", exist_ok=True)
|
| 48 |
+
|
| 49 |
+
# Mount static files for serving generated videos
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def get_video_url(output_path: str) -> str:
|
| 53 |
+
"""Convert local file path to accessible URL"""
|
| 54 |
+
try:
|
| 55 |
+
from pathlib import Path
|
| 56 |
+
filename = Path(output_path).name
|
| 57 |
+
|
| 58 |
+
# For HuggingFace Spaces, construct the URL
|
| 59 |
+
base_url = "https://bravedims-ai-avatar-chat.hf.space"
|
| 60 |
+
video_url = f"{base_url}/outputs/{filename}"
|
| 61 |
+
logger.info(f"Generated video URL: {video_url}")
|
| 62 |
+
return video_url
|
| 63 |
+
except Exception as e:
|
| 64 |
+
logger.error(f"Error creating video URL: {e}")
|
| 65 |
+
return output_path # Fallback to original path
|
| 66 |
+
|
| 67 |
+
# Pydantic models for request/response
|
| 68 |
+
class GenerateRequest(BaseModel):
|
| 69 |
+
prompt: str
|
| 70 |
+
text_to_speech: Optional[str] = None # Text to convert to speech
|
| 71 |
+
audio_url: Optional[HttpUrl] = None # Direct audio URL
|
| 72 |
+
voice_id: Optional[str] = "21m00Tcm4TlvDq8ikWAM" # Voice profile ID
|
| 73 |
+
image_url: Optional[HttpUrl] = None
|
| 74 |
+
guidance_scale: float = 5.0
|
| 75 |
+
audio_scale: float = 3.0
|
| 76 |
+
num_steps: int = 30
|
| 77 |
+
sp_size: int = 1
|
| 78 |
+
tea_cache_l1_thresh: Optional[float] = None
|
| 79 |
+
|
| 80 |
+
class GenerateResponse(BaseModel):
|
| 81 |
+
message: str
|
| 82 |
+
output_path: str
|
| 83 |
+
processing_time: float
|
| 84 |
+
audio_generated: bool = False
|
| 85 |
+
tts_method: Optional[str] = None
|
| 86 |
+
|
| 87 |
+
# Try to import TTS clients, but make them optional
|
| 88 |
+
try:
|
| 89 |
+
from advanced_tts_client import AdvancedTTSClient
|
| 90 |
+
ADVANCED_TTS_AVAILABLE = True
|
| 91 |
+
logger.info("SUCCESS: Advanced TTS client available")
|
| 92 |
+
except ImportError as e:
|
| 93 |
+
ADVANCED_TTS_AVAILABLE = False
|
| 94 |
+
logger.warning(f"WARNING: Advanced TTS client not available: {e}")
|
| 95 |
+
|
| 96 |
+
# Always import the robust fallback
|
| 97 |
+
try:
|
| 98 |
+
from robust_tts_client import RobustTTSClient
|
| 99 |
+
ROBUST_TTS_AVAILABLE = True
|
| 100 |
+
logger.info("SUCCESS: Robust TTS client available")
|
| 101 |
+
except ImportError as e:
|
| 102 |
+
ROBUST_TTS_AVAILABLE = False
|
| 103 |
+
logger.error(f"ERROR: Robust TTS client not available: {e}")
|
| 104 |
+
|
| 105 |
+
class TTSManager:
|
| 106 |
+
"""Manages multiple TTS clients with fallback chain"""
|
| 107 |
+
|
| 108 |
+
def __init__(self):
|
| 109 |
+
# Initialize TTS clients based on availability
|
| 110 |
+
self.advanced_tts = None
|
| 111 |
+
self.robust_tts = None
|
| 112 |
+
self.clients_loaded = False
|
| 113 |
+
|
| 114 |
+
if ADVANCED_TTS_AVAILABLE:
|
| 115 |
+
try:
|
| 116 |
+
self.advanced_tts = AdvancedTTSClient()
|
| 117 |
+
logger.info("SUCCESS: Advanced TTS client initialized")
|
| 118 |
+
except Exception as e:
|
| 119 |
+
logger.warning(f"WARNING: Advanced TTS client initialization failed: {e}")
|
| 120 |
+
|
| 121 |
+
if ROBUST_TTS_AVAILABLE:
|
| 122 |
+
try:
|
| 123 |
+
self.robust_tts = RobustTTSClient()
|
| 124 |
+
logger.info("SUCCESS: Robust TTS client initialized")
|
| 125 |
+
except Exception as e:
|
| 126 |
+
logger.error(f"ERROR: Robust TTS client initialization failed: {e}")
|
| 127 |
+
|
| 128 |
+
if not self.advanced_tts and not self.robust_tts:
|
| 129 |
+
logger.error("ERROR: No TTS clients available!")
|
| 130 |
+
|
| 131 |
+
async def load_models(self):
|
| 132 |
+
"""Load TTS models"""
|
| 133 |
+
try:
|
| 134 |
+
logger.info("Loading TTS models...")
|
| 135 |
+
|
| 136 |
+
# Try to load advanced TTS first
|
| 137 |
+
if self.advanced_tts:
|
| 138 |
+
try:
|
| 139 |
+
logger.info("[PROCESS] Loading advanced TTS models (this may take a few minutes)...")
|
| 140 |
+
success = await self.advanced_tts.load_models()
|
| 141 |
+
if success:
|
| 142 |
+
logger.info("SUCCESS: Advanced TTS models loaded successfully")
|
| 143 |
+
else:
|
| 144 |
+
logger.warning("WARNING: Advanced TTS models failed to load")
|
| 145 |
+
except Exception as e:
|
| 146 |
+
logger.warning(f"WARNING: Advanced TTS loading error: {e}")
|
| 147 |
+
|
| 148 |
+
# Always ensure robust TTS is available
|
| 149 |
+
if self.robust_tts:
|
| 150 |
+
try:
|
| 151 |
+
await self.robust_tts.load_model()
|
| 152 |
+
logger.info("SUCCESS: Robust TTS fallback ready")
|
| 153 |
+
except Exception as e:
|
| 154 |
+
logger.error(f"ERROR: Robust TTS loading failed: {e}")
|
| 155 |
+
|
| 156 |
+
self.clients_loaded = True
|
| 157 |
+
return True
|
| 158 |
+
|
| 159 |
+
except Exception as e:
|
| 160 |
+
logger.error(f"ERROR: TTS manager initialization failed: {e}")
|
| 161 |
+
return False
|
| 162 |
+
|
| 163 |
+
async def text_to_speech(self, text: str, voice_id: Optional[str] = None) -> tuple[str, str]:
|
| 164 |
+
"""
|
| 165 |
+
Convert text to speech with fallback chain
|
| 166 |
+
Returns: (audio_file_path, method_used)
|
| 167 |
+
"""
|
| 168 |
+
if not self.clients_loaded:
|
| 169 |
+
logger.info("TTS models not loaded, loading now...")
|
| 170 |
+
await self.load_models()
|
| 171 |
+
|
| 172 |
+
logger.info(f"Generating speech: {text[:50]}...")
|
| 173 |
+
logger.info(f"Voice ID: {voice_id}")
|
| 174 |
+
|
| 175 |
+
# Try Advanced TTS first (Facebook VITS / SpeechT5)
|
| 176 |
+
if self.advanced_tts:
|
| 177 |
+
try:
|
| 178 |
+
audio_path = await self.advanced_tts.text_to_speech(text, voice_id)
|
| 179 |
+
return audio_path, "Facebook VITS/SpeechT5"
|
| 180 |
+
except Exception as advanced_error:
|
| 181 |
+
logger.warning(f"Advanced TTS failed: {advanced_error}")
|
| 182 |
+
|
| 183 |
+
# Fall back to robust TTS
|
| 184 |
+
if self.robust_tts:
|
| 185 |
+
try:
|
| 186 |
+
logger.info("Falling back to robust TTS...")
|
| 187 |
+
audio_path = await self.robust_tts.text_to_speech(text, voice_id)
|
| 188 |
+
return audio_path, "Robust TTS (Fallback)"
|
| 189 |
+
except Exception as robust_error:
|
| 190 |
+
logger.error(f"Robust TTS also failed: {robust_error}")
|
| 191 |
+
|
| 192 |
+
# If we get here, all methods failed
|
| 193 |
+
logger.error("All TTS methods failed!")
|
| 194 |
+
raise HTTPException(
|
| 195 |
+
status_code=500,
|
| 196 |
+
detail="All TTS methods failed. Please check system configuration."
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
async def get_available_voices(self):
|
| 200 |
+
"""Get available voice configurations"""
|
| 201 |
+
try:
|
| 202 |
+
if self.advanced_tts and hasattr(self.advanced_tts, 'get_available_voices'):
|
| 203 |
+
return await self.advanced_tts.get_available_voices()
|
| 204 |
+
except:
|
| 205 |
+
pass
|
| 206 |
+
|
| 207 |
+
# Return default voices if advanced TTS not available
|
| 208 |
+
return {
|
| 209 |
+
"21m00Tcm4TlvDq8ikWAM": "Female (Neutral)",
|
| 210 |
+
"pNInz6obpgDQGcFmaJgB": "Male (Professional)",
|
| 211 |
+
"EXAVITQu4vr4xnSDxMaL": "Female (Sweet)",
|
| 212 |
+
"ErXwobaYiN019PkySvjV": "Male (Professional)",
|
| 213 |
+
"TxGEqnHWrfGW9XjX": "Male (Deep)",
|
| 214 |
+
"yoZ06aMxZJJ28mfd3POQ": "Unisex (Friendly)",
|
| 215 |
+
"AZnzlk1XvdvUeBnXmlld": "Female (Strong)"
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
def get_tts_info(self):
|
| 219 |
+
"""Get TTS system information"""
|
| 220 |
+
info = {
|
| 221 |
+
"clients_loaded": self.clients_loaded,
|
| 222 |
+
"advanced_tts_available": self.advanced_tts is not None,
|
| 223 |
+
"robust_tts_available": self.robust_tts is not None,
|
| 224 |
+
"primary_method": "Robust TTS"
|
| 225 |
+
}
|
| 226 |
+
|
| 227 |
+
try:
|
| 228 |
+
if self.advanced_tts and hasattr(self.advanced_tts, 'get_model_info'):
|
| 229 |
+
advanced_info = self.advanced_tts.get_model_info()
|
| 230 |
+
info.update({
|
| 231 |
+
"advanced_tts_loaded": advanced_info.get("models_loaded", False),
|
| 232 |
+
"transformers_available": advanced_info.get("transformers_available", False),
|
| 233 |
+
"primary_method": "Facebook VITS/SpeechT5" if advanced_info.get("models_loaded") else "Robust TTS",
|
| 234 |
+
"device": advanced_info.get("device", "cpu"),
|
| 235 |
+
"vits_available": advanced_info.get("vits_available", False),
|
| 236 |
+
"speecht5_available": advanced_info.get("speecht5_available", False)
|
| 237 |
+
})
|
| 238 |
+
except Exception as e:
|
| 239 |
+
logger.debug(f"Could not get advanced TTS info: {e}")
|
| 240 |
+
|
| 241 |
+
return info
|
| 242 |
+
|
| 243 |
+
# Import the VIDEO-FOCUSED engine
|
| 244 |
+
try:
|
| 245 |
+
from omniavatar_video_engine import video_engine
|
| 246 |
+
VIDEO_ENGINE_AVAILABLE = True
|
| 247 |
+
logger.info("SUCCESS: OmniAvatar Video Engine available")
|
| 248 |
+
except ImportError as e:
|
| 249 |
+
VIDEO_ENGINE_AVAILABLE = False
|
| 250 |
+
logger.error(f"ERROR: OmniAvatar Video Engine not available: {e}")
|
| 251 |
+
|
| 252 |
+
class OmniAvatarAPI:
|
| 253 |
+
def __init__(self):
|
| 254 |
+
self.model_loaded = False
|
| 255 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 256 |
+
self.tts_manager = TTSManager()
|
| 257 |
+
logger.info(f"Using device: {self.device}")
|
| 258 |
+
logger.info("Initialized with robust TTS system")
|
| 259 |
+
|
| 260 |
+
def load_model(self):
|
| 261 |
+
"""Load the OmniAvatar model - now more flexible"""
|
| 262 |
+
try:
|
| 263 |
+
# Check if models are downloaded (but don't require them)
|
| 264 |
+
model_paths = [
|
| 265 |
+
"./pretrained_models/Wan2.1-T2V-14B",
|
| 266 |
+
"./pretrained_models/OmniAvatar-14B",
|
| 267 |
+
"./pretrained_models/wav2vec2-base-960h"
|
| 268 |
+
]
|
| 269 |
+
|
| 270 |
+
missing_models = []
|
| 271 |
+
for path in model_paths:
|
| 272 |
+
if not os.path.exists(path):
|
| 273 |
+
missing_models.append(path)
|
| 274 |
+
|
| 275 |
+
if missing_models:
|
| 276 |
+
logger.warning("WARNING: Some OmniAvatar models not found:")
|
| 277 |
+
for model in missing_models:
|
| 278 |
+
logger.warning(f" - {model}")
|
| 279 |
+
logger.info("TIP: App will run in TTS-only mode (no video generation)")
|
| 280 |
+
logger.info("TIP: To enable full avatar generation, download the required models")
|
| 281 |
+
|
| 282 |
+
# Set as loaded but in limited mode
|
| 283 |
+
self.model_loaded = False # Video generation disabled
|
| 284 |
+
return True # But app can still run
|
| 285 |
+
else:
|
| 286 |
+
self.model_loaded = True
|
| 287 |
+
logger.info("SUCCESS: All OmniAvatar models found - full functionality enabled")
|
| 288 |
+
return True
|
| 289 |
+
|
| 290 |
+
except Exception as e:
|
| 291 |
+
logger.error(f"Error checking models: {str(e)}")
|
| 292 |
+
logger.info("TIP: Continuing in TTS-only mode")
|
| 293 |
+
self.model_loaded = False
|
| 294 |
+
return True # Continue running
|
| 295 |
+
|
| 296 |
+
async def download_file(self, url: str, suffix: str = "") -> str:
|
| 297 |
+
"""Download file from URL and save to temporary location"""
|
| 298 |
+
try:
|
| 299 |
+
async with aiohttp.ClientSession() as session:
|
| 300 |
+
async with session.get(str(url)) as response:
|
| 301 |
+
if response.status != 200:
|
| 302 |
+
raise HTTPException(status_code=400, detail=f"Failed to download file from URL: {url}")
|
| 303 |
+
|
| 304 |
+
content = await response.read()
|
| 305 |
+
|
| 306 |
+
# Create temporary file
|
| 307 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=suffix)
|
| 308 |
+
temp_file.write(content)
|
| 309 |
+
temp_file.close()
|
| 310 |
+
|
| 311 |
+
return temp_file.name
|
| 312 |
+
|
| 313 |
+
except aiohttp.ClientError as e:
|
| 314 |
+
logger.error(f"Network error downloading {url}: {e}")
|
| 315 |
+
raise HTTPException(status_code=400, detail=f"Network error downloading file: {e}")
|
| 316 |
+
except Exception as e:
|
| 317 |
+
logger.error(f"Error downloading file from {url}: {e}")
|
| 318 |
+
raise HTTPException(status_code=500, detail=f"Error downloading file: {e}")
|
| 319 |
+
|
| 320 |
+
def validate_audio_url(self, url: str) -> bool:
|
| 321 |
+
"""Validate if URL is likely an audio file"""
|
| 322 |
+
try:
|
| 323 |
+
parsed = urlparse(url)
|
| 324 |
+
# Check for common audio file extensions
|
| 325 |
+
audio_extensions = ['.mp3', '.wav', '.m4a', '.ogg', '.aac', '.flac']
|
| 326 |
+
is_audio_ext = any(parsed.path.lower().endswith(ext) for ext in audio_extensions)
|
| 327 |
+
|
| 328 |
+
return is_audio_ext or 'audio' in url.lower()
|
| 329 |
+
except:
|
| 330 |
+
return False
|
| 331 |
+
|
| 332 |
+
def validate_image_url(self, url: str) -> bool:
|
| 333 |
+
"""Validate if URL is likely an image file"""
|
| 334 |
+
try:
|
| 335 |
+
parsed = urlparse(url)
|
| 336 |
+
image_extensions = ['.jpg', '.jpeg', '.png', '.webp', '.bmp', '.gif']
|
| 337 |
+
return any(parsed.path.lower().endswith(ext) for ext in image_extensions)
|
| 338 |
+
except:
|
| 339 |
+
return False
|
| 340 |
+
|
| 341 |
+
async def generate_avatar(self, request: GenerateRequest) -> tuple[str, float, bool, str]:
|
| 342 |
+
"""Generate avatar VIDEO - PRIMARY FUNCTIONALITY"""
|
| 343 |
+
import time
|
| 344 |
+
start_time = time.time()
|
| 345 |
+
audio_generated = False
|
| 346 |
+
method_used = "Unknown"
|
| 347 |
+
|
| 348 |
+
logger.info("[VIDEO] STARTING AVATAR VIDEO GENERATION")
|
| 349 |
+
logger.info(f"[INFO] Prompt: {request.prompt}")
|
| 350 |
+
|
| 351 |
+
if VIDEO_ENGINE_AVAILABLE:
|
| 352 |
+
try:
|
| 353 |
+
# PRIORITIZE VIDEO GENERATION
|
| 354 |
+
logger.info("[TARGET] Using OmniAvatar Video Engine for FULL video generation")
|
| 355 |
+
|
| 356 |
+
# Handle audio source
|
| 357 |
+
audio_path = None
|
| 358 |
+
if request.text_to_speech:
|
| 359 |
+
logger.info("[MIC] Generating audio from text...")
|
| 360 |
+
audio_path, method_used = await self.tts_manager.text_to_speech(
|
| 361 |
+
request.text_to_speech,
|
| 362 |
+
request.voice_id or "21m00Tcm4TlvDq8ikWAM"
|
| 363 |
+
)
|
| 364 |
+
audio_generated = True
|
| 365 |
+
elif request.audio_url:
|
| 366 |
+
logger.info("?? Downloading audio from URL...")
|
| 367 |
+
audio_path = await self.download_file(str(request.audio_url), ".mp3")
|
| 368 |
+
method_used = "External Audio"
|
| 369 |
+
else:
|
| 370 |
+
raise HTTPException(status_code=400, detail="Either text_to_speech or audio_url required for video generation")
|
| 371 |
+
|
| 372 |
+
# Handle image if provided
|
| 373 |
+
image_path = None
|
| 374 |
+
if request.image_url:
|
| 375 |
+
logger.info("[IMAGE] Downloading reference image...")
|
| 376 |
+
parsed = urlparse(str(request.image_url))
|
| 377 |
+
ext = os.path.splitext(parsed.path)[1] or ".jpg"
|
| 378 |
+
image_path = await self.download_file(str(request.image_url), ext)
|
| 379 |
+
|
| 380 |
+
# GENERATE VIDEO using OmniAvatar engine
|
| 381 |
+
logger.info("[VIDEO] Generating avatar video with adaptive body animation...")
|
| 382 |
+
video_path, generation_time = video_engine.generate_avatar_video(
|
| 383 |
+
prompt=request.prompt,
|
| 384 |
+
audio_path=audio_path,
|
| 385 |
+
image_path=image_path,
|
| 386 |
+
guidance_scale=request.guidance_scale,
|
| 387 |
+
audio_scale=request.audio_scale,
|
| 388 |
+
num_steps=request.num_steps
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
processing_time = time.time() - start_time
|
| 392 |
+
logger.info(f"SUCCESS: VIDEO GENERATED successfully in {processing_time:.1f}s")
|
| 393 |
+
|
| 394 |
+
# Cleanup temporary files
|
| 395 |
+
if audio_path and os.path.exists(audio_path):
|
| 396 |
+
os.unlink(audio_path)
|
| 397 |
+
if image_path and os.path.exists(image_path):
|
| 398 |
+
os.unlink(image_path)
|
| 399 |
+
|
| 400 |
+
return video_path, processing_time, audio_generated, f"OmniAvatar Video Generation ({method_used})"
|
| 401 |
+
|
| 402 |
+
except Exception as e:
|
| 403 |
+
logger.error(f"ERROR: Video generation failed: {e}")
|
| 404 |
+
# For a VIDEO generation app, we should NOT fall back to audio-only
|
| 405 |
+
# Instead, provide clear guidance
|
| 406 |
+
if "models" in str(e).lower():
|
| 407 |
+
raise HTTPException(
|
| 408 |
+
status_code=503,
|
| 409 |
+
detail=f"Video generation requires OmniAvatar models (~30GB). Please run model download script. Error: {str(e)}"
|
| 410 |
+
)
|
| 411 |
+
else:
|
| 412 |
+
raise HTTPException(status_code=500, detail=f"Video generation failed: {str(e)}")
|
| 413 |
+
|
| 414 |
+
# If video engine not available, this is a critical error for a VIDEO app
|
| 415 |
+
raise HTTPException(
|
| 416 |
+
status_code=503,
|
| 417 |
+
detail="Video generation engine not available. This application requires OmniAvatar models for video generation."
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
async def generate_avatar_BACKUP(self, request: GenerateRequest) -> tuple[str, float, bool, str]:
|
| 421 |
+
"""OLD TTS-ONLY METHOD - kept as backup reference
|
| 422 |
+
"""Generate avatar video from prompt and audio/text - now handles missing models"""
|
| 423 |
+
import time
|
| 424 |
+
start_time = time.time()
|
| 425 |
+
audio_generated = False
|
| 426 |
+
tts_method = None
|
| 427 |
+
|
| 428 |
+
try:
|
| 429 |
+
# Check if video generation is available
|
| 430 |
+
if not self.model_loaded:
|
| 431 |
+
logger.info("??? Running in TTS-only mode (OmniAvatar models not available)")
|
| 432 |
+
|
| 433 |
+
# Only generate audio, no video
|
| 434 |
+
if request.text_to_speech:
|
| 435 |
+
logger.info(f"Generating speech from text: {request.text_to_speech[:50]}...")
|
| 436 |
+
audio_path, tts_method = await self.tts_manager.text_to_speech(
|
| 437 |
+
request.text_to_speech,
|
| 438 |
+
request.voice_id or "21m00Tcm4TlvDq8ikWAM"
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
# Return the audio file as the "output"
|
| 442 |
+
processing_time = time.time() - start_time
|
| 443 |
+
logger.info(f"SUCCESS: TTS completed in {processing_time:.1f}s using {tts_method}")
|
| 444 |
+
return audio_path, processing_time, True, f"{tts_method} (TTS-only mode)"
|
| 445 |
+
else:
|
| 446 |
+
raise HTTPException(
|
| 447 |
+
status_code=503,
|
| 448 |
+
detail="Video generation unavailable. OmniAvatar models not found. Only TTS from text is supported."
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
# Original video generation logic (when models are available)
|
| 452 |
+
# Determine audio source
|
| 453 |
+
audio_path = None
|
| 454 |
+
|
| 455 |
+
if request.text_to_speech:
|
| 456 |
+
# Generate speech from text using TTS manager
|
| 457 |
+
logger.info(f"Generating speech from text: {request.text_to_speech[:50]}...")
|
| 458 |
+
audio_path, tts_method = await self.tts_manager.text_to_speech(
|
| 459 |
+
request.text_to_speech,
|
| 460 |
+
request.voice_id or "21m00Tcm4TlvDq8ikWAM"
|
| 461 |
+
)
|
| 462 |
+
audio_generated = True
|
| 463 |
+
|
| 464 |
+
elif request.audio_url:
|
| 465 |
+
# Download audio from provided URL
|
| 466 |
+
logger.info(f"Downloading audio from URL: {request.audio_url}")
|
| 467 |
+
if not self.validate_audio_url(str(request.audio_url)):
|
| 468 |
+
logger.warning(f"Audio URL may not be valid: {request.audio_url}")
|
| 469 |
+
|
| 470 |
+
audio_path = await self.download_file(str(request.audio_url), ".mp3")
|
| 471 |
+
tts_method = "External Audio URL"
|
| 472 |
+
|
| 473 |
+
else:
|
| 474 |
+
raise HTTPException(
|
| 475 |
+
status_code=400,
|
| 476 |
+
detail="Either text_to_speech or audio_url must be provided"
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
# Download image if provided
|
| 480 |
+
image_path = None
|
| 481 |
+
if request.image_url:
|
| 482 |
+
logger.info(f"Downloading image from URL: {request.image_url}")
|
| 483 |
+
if not self.validate_image_url(str(request.image_url)):
|
| 484 |
+
logger.warning(f"Image URL may not be valid: {request.image_url}")
|
| 485 |
+
|
| 486 |
+
# Determine image extension from URL or default to .jpg
|
| 487 |
+
parsed = urlparse(str(request.image_url))
|
| 488 |
+
ext = os.path.splitext(parsed.path)[1] or ".jpg"
|
| 489 |
+
image_path = await self.download_file(str(request.image_url), ext)
|
| 490 |
+
|
| 491 |
+
# Create temporary input file for inference
|
| 492 |
+
with tempfile.NamedTemporaryFile(mode='w', suffix='.txt', delete=False) as f:
|
| 493 |
+
if image_path:
|
| 494 |
+
input_line = f"{request.prompt}@@{image_path}@@{audio_path}"
|
| 495 |
+
else:
|
| 496 |
+
input_line = f"{request.prompt}@@@@{audio_path}"
|
| 497 |
+
f.write(input_line)
|
| 498 |
+
temp_input_file = f.name
|
| 499 |
+
|
| 500 |
+
# Prepare inference command
|
| 501 |
+
cmd = [
|
| 502 |
+
"python", "-m", "torch.distributed.run",
|
| 503 |
+
"--standalone", f"--nproc_per_node={request.sp_size}",
|
| 504 |
+
"scripts/inference.py",
|
| 505 |
+
"--config", "configs/inference.yaml",
|
| 506 |
+
"--input_file", temp_input_file,
|
| 507 |
+
"--guidance_scale", str(request.guidance_scale),
|
| 508 |
+
"--audio_scale", str(request.audio_scale),
|
| 509 |
+
"--num_steps", str(request.num_steps)
|
| 510 |
+
]
|
| 511 |
+
|
| 512 |
+
if request.tea_cache_l1_thresh:
|
| 513 |
+
cmd.extend(["--tea_cache_l1_thresh", str(request.tea_cache_l1_thresh)])
|
| 514 |
+
|
| 515 |
+
logger.info(f"Running inference with command: {' '.join(cmd)}")
|
| 516 |
+
|
| 517 |
+
# Run inference
|
| 518 |
+
result = subprocess.run(cmd, capture_output=True, text=True)
|
| 519 |
+
|
| 520 |
+
# Clean up temporary files
|
| 521 |
+
os.unlink(temp_input_file)
|
| 522 |
+
os.unlink(audio_path)
|
| 523 |
+
if image_path:
|
| 524 |
+
os.unlink(image_path)
|
| 525 |
+
|
| 526 |
+
if result.returncode != 0:
|
| 527 |
+
logger.error(f"Inference failed: {result.stderr}")
|
| 528 |
+
raise Exception(f"Inference failed: {result.stderr}")
|
| 529 |
+
|
| 530 |
+
# Find output video file
|
| 531 |
+
output_dir = "./outputs"
|
| 532 |
+
if os.path.exists(output_dir):
|
| 533 |
+
video_files = [f for f in os.listdir(output_dir) if f.endswith(('.mp4', '.avi'))]
|
| 534 |
+
if video_files:
|
| 535 |
+
# Return the most recent video file
|
| 536 |
+
video_files.sort(key=lambda x: os.path.getmtime(os.path.join(output_dir, x)), reverse=True)
|
| 537 |
+
output_path = os.path.join(output_dir, video_files[0])
|
| 538 |
+
processing_time = time.time() - start_time
|
| 539 |
+
return output_path, processing_time, audio_generated, tts_method
|
| 540 |
+
|
| 541 |
+
raise Exception("No output video generated")
|
| 542 |
+
|
| 543 |
+
except Exception as e:
|
| 544 |
+
# Clean up any temporary files in case of error
|
| 545 |
+
try:
|
| 546 |
+
if 'audio_path' in locals() and audio_path and os.path.exists(audio_path):
|
| 547 |
+
os.unlink(audio_path)
|
| 548 |
+
if 'image_path' in locals() and image_path and os.path.exists(image_path):
|
| 549 |
+
os.unlink(image_path)
|
| 550 |
+
if 'temp_input_file' in locals() and os.path.exists(temp_input_file):
|
| 551 |
+
os.unlink(temp_input_file)
|
| 552 |
+
except:
|
| 553 |
+
pass
|
| 554 |
+
|
| 555 |
+
logger.error(f"Generation error: {str(e)}")
|
| 556 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 557 |
+
|
| 558 |
+
# Initialize API
|
| 559 |
+
omni_api = OmniAvatarAPI()
|
| 560 |
+
|
| 561 |
+
# Use FastAPI lifespan instead of deprecated on_event
|
| 562 |
+
from contextlib import asynccontextmanager
|
| 563 |
+
|
| 564 |
+
@asynccontextmanager
|
| 565 |
+
async def lifespan(app: FastAPI):
|
| 566 |
+
# Startup
|
| 567 |
+
success = omni_api.load_model()
|
| 568 |
+
if not success:
|
| 569 |
+
logger.warning("WARNING: OmniAvatar model loading failed - running in limited mode")
|
| 570 |
+
|
| 571 |
+
# Load TTS models
|
| 572 |
+
try:
|
| 573 |
+
await omni_api.tts_manager.load_models()
|
| 574 |
+
logger.info("SUCCESS: TTS models initialization completed")
|
| 575 |
+
except Exception as e:
|
| 576 |
+
logger.error(f"ERROR: TTS initialization failed: {e}")
|
| 577 |
+
|
| 578 |
+
yield
|
| 579 |
+
|
| 580 |
+
# Shutdown (if needed)
|
| 581 |
+
logger.info("Application shutting down...")
|
| 582 |
+
|
| 583 |
+
# Create FastAPI app WITH lifespan parameter
|
| 584 |
+
app = FastAPI(
|
| 585 |
+
title="OmniAvatar-14B API with Advanced TTS",
|
| 586 |
+
version="1.0.0",
|
| 587 |
+
lifespan=lifespan
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
# Add CORS middleware
|
| 591 |
+
app.add_middleware(
|
| 592 |
+
CORSMiddleware,
|
| 593 |
+
allow_origins=["*"],
|
| 594 |
+
allow_credentials=True,
|
| 595 |
+
allow_methods=["*"],
|
| 596 |
+
allow_headers=["*"],
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
# Mount static files for serving generated videos
|
| 600 |
+
app.mount("/outputs", StaticFiles(directory="outputs"), name="outputs")
|
| 601 |
+
|
| 602 |
+
@app.get("/health")
|
| 603 |
+
async def health_check():
|
| 604 |
+
"""Health check endpoint"""
|
| 605 |
+
tts_info = omni_api.tts_manager.get_tts_info()
|
| 606 |
+
|
| 607 |
+
return {
|
| 608 |
+
"status": "healthy",
|
| 609 |
+
"model_loaded": omni_api.model_loaded,
|
| 610 |
+
"video_generation_available": omni_api.model_loaded,
|
| 611 |
+
"tts_only_mode": not omni_api.model_loaded,
|
| 612 |
+
"device": omni_api.device,
|
| 613 |
+
"supports_text_to_speech": True,
|
| 614 |
+
"supports_image_urls": omni_api.model_loaded,
|
| 615 |
+
"supports_audio_urls": omni_api.model_loaded,
|
| 616 |
+
"tts_system": "Advanced TTS with Robust Fallback",
|
| 617 |
+
"advanced_tts_available": ADVANCED_TTS_AVAILABLE,
|
| 618 |
+
"robust_tts_available": ROBUST_TTS_AVAILABLE,
|
| 619 |
+
**tts_info
|
| 620 |
+
}
|
| 621 |
+
|
| 622 |
+
@app.get("/voices")
|
| 623 |
+
async def get_voices():
|
| 624 |
+
"""Get available voice configurations"""
|
| 625 |
+
try:
|
| 626 |
+
voices = await omni_api.tts_manager.get_available_voices()
|
| 627 |
+
return {"voices": voices}
|
| 628 |
+
except Exception as e:
|
| 629 |
+
logger.error(f"Error getting voices: {e}")
|
| 630 |
+
return {"error": str(e)}
|
| 631 |
+
|
| 632 |
+
@app.post("/generate", response_model=GenerateResponse)
|
| 633 |
+
async def generate_avatar(request: GenerateRequest):
|
| 634 |
+
"""Generate avatar video from prompt, text/audio, and optional image URL"""
|
| 635 |
+
|
| 636 |
+
logger.info(f"Generating avatar with prompt: {request.prompt}")
|
| 637 |
+
if request.text_to_speech:
|
| 638 |
+
logger.info(f"Text to speech: {request.text_to_speech[:100]}...")
|
| 639 |
+
logger.info(f"Voice ID: {request.voice_id}")
|
| 640 |
+
if request.audio_url:
|
| 641 |
+
logger.info(f"Audio URL: {request.audio_url}")
|
| 642 |
+
if request.image_url:
|
| 643 |
+
logger.info(f"Image URL: {request.image_url}")
|
| 644 |
+
|
| 645 |
+
try:
|
| 646 |
+
output_path, processing_time, audio_generated, tts_method = await omni_api.generate_avatar(request)
|
| 647 |
+
|
| 648 |
+
return GenerateResponse(
|
| 649 |
+
message="Generation completed successfully" + (" (TTS-only mode)" if not omni_api.model_loaded else ""),
|
| 650 |
+
output_path=get_video_url(output_path) if omni_api.model_loaded else output_path,
|
| 651 |
+
processing_time=processing_time,
|
| 652 |
+
audio_generated=audio_generated,
|
| 653 |
+
tts_method=tts_method
|
| 654 |
+
)
|
| 655 |
+
|
| 656 |
+
except HTTPException:
|
| 657 |
+
raise
|
| 658 |
+
except Exception as e:
|
| 659 |
+
logger.error(f"Unexpected error: {e}")
|
| 660 |
+
raise HTTPException(status_code=500, detail=f"Unexpected error: {e}")
|
| 661 |
+
|
| 662 |
+
# Enhanced Gradio interface
|
| 663 |
+
def gradio_generate(prompt, text_to_speech, audio_url, image_url, voice_id, guidance_scale, audio_scale, num_steps):
|
| 664 |
+
"""Gradio interface wrapper with robust TTS support"""
|
| 665 |
+
try:
|
| 666 |
+
# Create request object
|
| 667 |
+
request_data = {
|
| 668 |
+
"prompt": prompt,
|
| 669 |
+
"guidance_scale": guidance_scale,
|
| 670 |
+
"audio_scale": audio_scale,
|
| 671 |
+
"num_steps": int(num_steps)
|
| 672 |
+
}
|
| 673 |
+
|
| 674 |
+
# Add audio source
|
| 675 |
+
if text_to_speech and text_to_speech.strip():
|
| 676 |
+
request_data["text_to_speech"] = text_to_speech
|
| 677 |
+
request_data["voice_id"] = voice_id or "21m00Tcm4TlvDq8ikWAM"
|
| 678 |
+
elif audio_url and audio_url.strip():
|
| 679 |
+
if omni_api.model_loaded:
|
| 680 |
+
request_data["audio_url"] = audio_url
|
| 681 |
+
else:
|
| 682 |
+
return "Error: Audio URL input requires full OmniAvatar models. Please use text-to-speech instead."
|
| 683 |
+
else:
|
| 684 |
+
return "Error: Please provide either text to speech or audio URL"
|
| 685 |
+
|
| 686 |
+
if image_url and image_url.strip():
|
| 687 |
+
if omni_api.model_loaded:
|
| 688 |
+
request_data["image_url"] = image_url
|
| 689 |
+
else:
|
| 690 |
+
return "Error: Image URL input requires full OmniAvatar models for video generation."
|
| 691 |
+
|
| 692 |
+
request = GenerateRequest(**request_data)
|
| 693 |
+
|
| 694 |
+
# Run async function in sync context
|
| 695 |
+
loop = asyncio.new_event_loop()
|
| 696 |
+
asyncio.set_event_loop(loop)
|
| 697 |
+
output_path, processing_time, audio_generated, tts_method = loop.run_until_complete(omni_api.generate_avatar(request))
|
| 698 |
+
loop.close()
|
| 699 |
+
|
| 700 |
+
success_message = f"SUCCESS: Generation completed in {processing_time:.1f}s using {tts_method}"
|
| 701 |
+
print(success_message)
|
| 702 |
+
|
| 703 |
+
if omni_api.model_loaded:
|
| 704 |
+
return output_path
|
| 705 |
+
else:
|
| 706 |
+
return f"??? TTS Audio generated successfully using {tts_method}\nFile: {output_path}\n\nWARNING: Video generation unavailable (OmniAvatar models not found)"
|
| 707 |
+
|
| 708 |
+
except Exception as e:
|
| 709 |
+
logger.error(f"Gradio generation error: {e}")
|
| 710 |
+
return f"Error: {str(e)}"
|
| 711 |
+
|
| 712 |
+
# Create Gradio interface
|
| 713 |
+
mode_info = " (TTS-Only Mode)" if not omni_api.model_loaded else ""
|
| 714 |
+
description_extra = """
|
| 715 |
+
WARNING: Running in TTS-Only Mode - OmniAvatar models not found. Only text-to-speech generation is available.
|
| 716 |
+
To enable full video generation, the required model files need to be downloaded.
|
| 717 |
+
""" if not omni_api.model_loaded else ""
|
| 718 |
+
|
| 719 |
+
iface = gr.Interface(
|
| 720 |
+
fn=gradio_generate,
|
| 721 |
+
inputs=[
|
| 722 |
+
gr.Textbox(
|
| 723 |
+
label="Prompt",
|
| 724 |
+
placeholder="Describe the character behavior (e.g., 'A friendly person explaining a concept')",
|
| 725 |
+
lines=2
|
| 726 |
+
),
|
| 727 |
+
gr.Textbox(
|
| 728 |
+
label="Text to Speech",
|
| 729 |
+
placeholder="Enter text to convert to speech",
|
| 730 |
+
lines=3,
|
| 731 |
+
info="Will use best available TTS system (Advanced or Fallback)"
|
| 732 |
+
),
|
| 733 |
+
gr.Textbox(
|
| 734 |
+
label="OR Audio URL",
|
| 735 |
+
placeholder="https://example.com/audio.mp3",
|
| 736 |
+
info="Direct URL to audio file (requires full models)" if not omni_api.model_loaded else "Direct URL to audio file"
|
| 737 |
+
),
|
| 738 |
+
gr.Textbox(
|
| 739 |
+
label="Image URL (Optional)",
|
| 740 |
+
placeholder="https://example.com/image.jpg",
|
| 741 |
+
info="Direct URL to reference image (requires full models)" if not omni_api.model_loaded else "Direct URL to reference image"
|
| 742 |
+
),
|
| 743 |
+
gr.Dropdown(
|
| 744 |
+
choices=[
|
| 745 |
+
"21m00Tcm4TlvDq8ikWAM",
|
| 746 |
+
"pNInz6obpgDQGcFmaJgB",
|
| 747 |
+
"EXAVITQu4vr4xnSDxMaL",
|
| 748 |
+
"ErXwobaYiN019PkySvjV",
|
| 749 |
+
"TxGEqnHWrfGW9XjX",
|
| 750 |
+
"yoZ06aMxZJJ28mfd3POQ",
|
| 751 |
+
"AZnzlk1XvdvUeBnXmlld"
|
| 752 |
+
],
|
| 753 |
+
value="21m00Tcm4TlvDq8ikWAM",
|
| 754 |
+
label="Voice Profile",
|
| 755 |
+
info="Choose voice characteristics for TTS generation"
|
| 756 |
+
),
|
| 757 |
+
gr.Slider(minimum=1, maximum=10, value=5.0, label="Guidance Scale", info="4-6 recommended"),
|
| 758 |
+
gr.Slider(minimum=1, maximum=10, value=3.0, label="Audio Scale", info="Higher values = better lip-sync"),
|
| 759 |
+
gr.Slider(minimum=10, maximum=100, value=30, step=1, label="Number of Steps", info="20-50 recommended")
|
| 760 |
+
],
|
| 761 |
+
outputs=gr.Video(label="Generated Avatar Video") if omni_api.model_loaded else gr.Textbox(label="TTS Output"),
|
| 762 |
+
title="[VIDEO] OmniAvatar-14B - Avatar Video Generation with Adaptive Body Animation",
|
| 763 |
+
description=f"""
|
| 764 |
+
Generate avatar videos with lip-sync from text prompts and speech using robust TTS system.
|
| 765 |
+
|
| 766 |
+
{description_extra}
|
| 767 |
+
|
| 768 |
+
**Robust TTS Architecture**
|
| 769 |
+
- **Primary**: Advanced TTS (Facebook VITS & SpeechT5) if available
|
| 770 |
+
- **Fallback**: Robust tone generation for 100% reliability
|
| 771 |
+
- **Automatic**: Seamless switching between methods
|
| 772 |
+
|
| 773 |
+
**Features:**
|
| 774 |
+
- **Guaranteed Generation**: Always produces audio output
|
| 775 |
+
- **No Dependencies**: Works even without advanced models
|
| 776 |
+
- **High Availability**: Multiple fallback layers
|
| 777 |
+
- **Voice Profiles**: Multiple voice characteristics
|
| 778 |
+
- **Audio URL Support**: Use external audio files {"(full models required)" if not omni_api.model_loaded else ""}
|
| 779 |
+
- **Image URL Support**: Reference images for characters {"(full models required)" if not omni_api.model_loaded else ""}
|
| 780 |
+
|
| 781 |
+
**Usage:**
|
| 782 |
+
1. Enter a character description in the prompt
|
| 783 |
+
2. **Enter text for speech generation** (recommended in current mode)
|
| 784 |
+
3. {"Optionally add reference image/audio URLs (requires full models)" if not omni_api.model_loaded else "Optionally add reference image URL and choose audio source"}
|
| 785 |
+
4. Choose voice profile and adjust parameters
|
| 786 |
+
5. Generate your {"audio" if not omni_api.model_loaded else "avatar video"}!
|
| 787 |
+
""",
|
| 788 |
+
examples=[
|
| 789 |
+
[
|
| 790 |
+
"A professional teacher explaining a mathematical concept with clear gestures",
|
| 791 |
+
"Hello students! Today we're going to learn about calculus and derivatives.",
|
| 792 |
+
"",
|
| 793 |
+
"",
|
| 794 |
+
"21m00Tcm4TlvDq8ikWAM",
|
| 795 |
+
5.0,
|
| 796 |
+
3.5,
|
| 797 |
+
30
|
| 798 |
+
],
|
| 799 |
+
[
|
| 800 |
+
"A friendly presenter speaking confidently to an audience",
|
| 801 |
+
"Welcome everyone to our presentation on artificial intelligence!",
|
| 802 |
+
"",
|
| 803 |
+
"",
|
| 804 |
+
"pNInz6obpgDQGcFmaJgB",
|
| 805 |
+
5.5,
|
| 806 |
+
4.0,
|
| 807 |
+
35
|
| 808 |
+
]
|
| 809 |
+
],
|
| 810 |
+
allow_flagging="never",
|
| 811 |
+
flagging_dir="/tmp/gradio_flagged"
|
| 812 |
+
)
|
| 813 |
+
|
| 814 |
+
# Mount Gradio app
|
| 815 |
+
app = gr.mount_gradio_app(app, iface, path="/gradio")
|
| 816 |
+
|
| 817 |
+
if __name__ == "__main__":
|
| 818 |
+
import uvicorn
|
| 819 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 820 |
+
|
| 821 |
+
|
| 822 |
+
|
| 823 |
+
|
| 824 |
+
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
|
| 828 |
+
|
app_temp.py
ADDED
|
@@ -0,0 +1,827 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import tempfile
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from fastapi import FastAPI, HTTPException
|
| 6 |
+
from fastapi.staticfiles import StaticFiles
|
| 7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
+
from pydantic import BaseModel, HttpUrl
|
| 9 |
+
import subprocess
|
| 10 |
+
import json
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
import logging
|
| 13 |
+
import requests
|
| 14 |
+
from urllib.parse import urlparse
|
| 15 |
+
from PIL import Image
|
| 16 |
+
import io
|
| 17 |
+
from typing import Optional
|
| 18 |
+
import aiohttp
|
| 19 |
+
import asyncio
|
| 20 |
+
from dotenv import load_dotenv
|
| 21 |
+
|
| 22 |
+
# Load environment variables
|
| 23 |
+
load_dotenv()
|
| 24 |
+
|
| 25 |
+
# Set up logging
|
| 26 |
+
logging.basicConfig(level=logging.INFO)
|
| 27 |
+
logger = logging.getLogger(__name__)
|
| 28 |
+
|
| 29 |
+
# Set environment variables for matplotlib, gradio, and huggingface cache
|
| 30 |
+
os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
|
| 31 |
+
os.environ['GRADIO_ALLOW_FLAGGING'] = 'never'
|
| 32 |
+
os.environ['HF_HOME'] = '/tmp/huggingface'
|
| 33 |
+
# Use HF_HOME instead of deprecated TRANSFORMERS_CACHE
|
| 34 |
+
os.environ['HF_DATASETS_CACHE'] = '/tmp/huggingface/datasets'
|
| 35 |
+
os.environ['HUGGINGFACE_HUB_CACHE'] = '/tmp/huggingface/hub'
|
| 36 |
+
|
| 37 |
+
# FastAPI app will be created after lifespan is defined
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# Create directories with proper permissions
|
| 42 |
+
os.makedirs("outputs", exist_ok=True)
|
| 43 |
+
os.makedirs("/tmp/matplotlib", exist_ok=True)
|
| 44 |
+
os.makedirs("/tmp/huggingface", exist_ok=True)
|
| 45 |
+
os.makedirs("/tmp/huggingface/transformers", exist_ok=True)
|
| 46 |
+
os.makedirs("/tmp/huggingface/datasets", exist_ok=True)
|
| 47 |
+
os.makedirs("/tmp/huggingface/hub", exist_ok=True)
|
| 48 |
+
|
| 49 |
+
# Mount static files for serving generated videos
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def get_video_url(output_path: str) -> str:
|
| 53 |
+
"""Convert local file path to accessible URL"""
|
| 54 |
+
try:
|
| 55 |
+
from pathlib import Path
|
| 56 |
+
filename = Path(output_path).name
|
| 57 |
+
|
| 58 |
+
# For HuggingFace Spaces, construct the URL
|
| 59 |
+
base_url = "https://bravedims-ai-avatar-chat.hf.space"
|
| 60 |
+
video_url = f"{base_url}/outputs/{filename}"
|
| 61 |
+
logger.info(f"Generated video URL: {video_url}")
|
| 62 |
+
return video_url
|
| 63 |
+
except Exception as e:
|
| 64 |
+
logger.error(f"Error creating video URL: {e}")
|
| 65 |
+
return output_path # Fallback to original path
|
| 66 |
+
|
| 67 |
+
# Pydantic models for request/response
|
| 68 |
+
class GenerateRequest(BaseModel):
|
| 69 |
+
prompt: str
|
| 70 |
+
text_to_speech: Optional[str] = None # Text to convert to speech
|
| 71 |
+
audio_url: Optional[HttpUrl] = None # Direct audio URL
|
| 72 |
+
voice_id: Optional[str] = "21m00Tcm4TlvDq8ikWAM" # Voice profile ID
|
| 73 |
+
image_url: Optional[HttpUrl] = None
|
| 74 |
+
guidance_scale: float = 5.0
|
| 75 |
+
audio_scale: float = 3.0
|
| 76 |
+
num_steps: int = 30
|
| 77 |
+
sp_size: int = 1
|
| 78 |
+
tea_cache_l1_thresh: Optional[float] = None
|
| 79 |
+
|
| 80 |
+
class GenerateResponse(BaseModel):
|
| 81 |
+
message: str
|
| 82 |
+
output_path: str
|
| 83 |
+
processing_time: float
|
| 84 |
+
audio_generated: bool = False
|
| 85 |
+
tts_method: Optional[str] = None
|
| 86 |
+
|
| 87 |
+
# Try to import TTS clients, but make them optional
|
| 88 |
+
try:
|
| 89 |
+
from advanced_tts_client import AdvancedTTSClient
|
| 90 |
+
ADVANCED_TTS_AVAILABLE = True
|
| 91 |
+
logger.info("SUCCESS: Advanced TTS client available")
|
| 92 |
+
except ImportError as e:
|
| 93 |
+
ADVANCED_TTS_AVAILABLE = False
|
| 94 |
+
logger.warning(f"WARNING: Advanced TTS client not available: {e}")
|
| 95 |
+
|
| 96 |
+
# Always import the robust fallback
|
| 97 |
+
try:
|
| 98 |
+
from robust_tts_client import RobustTTSClient
|
| 99 |
+
ROBUST_TTS_AVAILABLE = True
|
| 100 |
+
logger.info("SUCCESS: Robust TTS client available")
|
| 101 |
+
except ImportError as e:
|
| 102 |
+
ROBUST_TTS_AVAILABLE = False
|
| 103 |
+
logger.error(f"ERROR: Robust TTS client not available: {e}")
|
| 104 |
+
|
| 105 |
+
class TTSManager:
|
| 106 |
+
"""Manages multiple TTS clients with fallback chain"""
|
| 107 |
+
|
| 108 |
+
def __init__(self):
|
| 109 |
+
# Initialize TTS clients based on availability
|
| 110 |
+
self.advanced_tts = None
|
| 111 |
+
self.robust_tts = None
|
| 112 |
+
self.clients_loaded = False
|
| 113 |
+
|
| 114 |
+
if ADVANCED_TTS_AVAILABLE:
|
| 115 |
+
try:
|
| 116 |
+
self.advanced_tts = AdvancedTTSClient()
|
| 117 |
+
logger.info("SUCCESS: Advanced TTS client initialized")
|
| 118 |
+
except Exception as e:
|
| 119 |
+
logger.warning(f"WARNING: Advanced TTS client initialization failed: {e}")
|
| 120 |
+
|
| 121 |
+
if ROBUST_TTS_AVAILABLE:
|
| 122 |
+
try:
|
| 123 |
+
self.robust_tts = RobustTTSClient()
|
| 124 |
+
logger.info("SUCCESS: Robust TTS client initialized")
|
| 125 |
+
except Exception as e:
|
| 126 |
+
logger.error(f"ERROR: Robust TTS client initialization failed: {e}")
|
| 127 |
+
|
| 128 |
+
if not self.advanced_tts and not self.robust_tts:
|
| 129 |
+
logger.error("ERROR: No TTS clients available!")
|
| 130 |
+
|
| 131 |
+
async def load_models(self):
|
| 132 |
+
"""Load TTS models"""
|
| 133 |
+
try:
|
| 134 |
+
logger.info("Loading TTS models...")
|
| 135 |
+
|
| 136 |
+
# Try to load advanced TTS first
|
| 137 |
+
if self.advanced_tts:
|
| 138 |
+
try:
|
| 139 |
+
logger.info("[PROCESS] Loading advanced TTS models (this may take a few minutes)...")
|
| 140 |
+
success = await self.advanced_tts.load_models()
|
| 141 |
+
if success:
|
| 142 |
+
logger.info("SUCCESS: Advanced TTS models loaded successfully")
|
| 143 |
+
else:
|
| 144 |
+
logger.warning("WARNING: Advanced TTS models failed to load")
|
| 145 |
+
except Exception as e:
|
| 146 |
+
logger.warning(f"WARNING: Advanced TTS loading error: {e}")
|
| 147 |
+
|
| 148 |
+
# Always ensure robust TTS is available
|
| 149 |
+
if self.robust_tts:
|
| 150 |
+
try:
|
| 151 |
+
await self.robust_tts.load_model()
|
| 152 |
+
logger.info("SUCCESS: Robust TTS fallback ready")
|
| 153 |
+
except Exception as e:
|
| 154 |
+
logger.error(f"ERROR: Robust TTS loading failed: {e}")
|
| 155 |
+
|
| 156 |
+
self.clients_loaded = True
|
| 157 |
+
return True
|
| 158 |
+
|
| 159 |
+
except Exception as e:
|
| 160 |
+
logger.error(f"ERROR: TTS manager initialization failed: {e}")
|
| 161 |
+
return False
|
| 162 |
+
|
| 163 |
+
async def text_to_speech(self, text: str, voice_id: Optional[str] = None) -> tuple[str, str]:
|
| 164 |
+
"""
|
| 165 |
+
Convert text to speech with fallback chain
|
| 166 |
+
Returns: (audio_file_path, method_used)
|
| 167 |
+
"""
|
| 168 |
+
if not self.clients_loaded:
|
| 169 |
+
logger.info("TTS models not loaded, loading now...")
|
| 170 |
+
await self.load_models()
|
| 171 |
+
|
| 172 |
+
logger.info(f"Generating speech: {text[:50]}...")
|
| 173 |
+
logger.info(f"Voice ID: {voice_id}")
|
| 174 |
+
|
| 175 |
+
# Try Advanced TTS first (Facebook VITS / SpeechT5)
|
| 176 |
+
if self.advanced_tts:
|
| 177 |
+
try:
|
| 178 |
+
audio_path = await self.advanced_tts.text_to_speech(text, voice_id)
|
| 179 |
+
return audio_path, "Facebook VITS/SpeechT5"
|
| 180 |
+
except Exception as advanced_error:
|
| 181 |
+
logger.warning(f"Advanced TTS failed: {advanced_error}")
|
| 182 |
+
|
| 183 |
+
# Fall back to robust TTS
|
| 184 |
+
if self.robust_tts:
|
| 185 |
+
try:
|
| 186 |
+
logger.info("Falling back to robust TTS...")
|
| 187 |
+
audio_path = await self.robust_tts.text_to_speech(text, voice_id)
|
| 188 |
+
return audio_path, "Robust TTS (Fallback)"
|
| 189 |
+
except Exception as robust_error:
|
| 190 |
+
logger.error(f"Robust TTS also failed: {robust_error}")
|
| 191 |
+
|
| 192 |
+
# If we get here, all methods failed
|
| 193 |
+
logger.error("All TTS methods failed!")
|
| 194 |
+
raise HTTPException(
|
| 195 |
+
status_code=500,
|
| 196 |
+
detail="All TTS methods failed. Please check system configuration."
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
async def get_available_voices(self):
|
| 200 |
+
"""Get available voice configurations"""
|
| 201 |
+
try:
|
| 202 |
+
if self.advanced_tts and hasattr(self.advanced_tts, 'get_available_voices'):
|
| 203 |
+
return await self.advanced_tts.get_available_voices()
|
| 204 |
+
except:
|
| 205 |
+
pass
|
| 206 |
+
|
| 207 |
+
# Return default voices if advanced TTS not available
|
| 208 |
+
return {
|
| 209 |
+
"21m00Tcm4TlvDq8ikWAM": "Female (Neutral)",
|
| 210 |
+
"pNInz6obpgDQGcFmaJgB": "Male (Professional)",
|
| 211 |
+
"EXAVITQu4vr4xnSDxMaL": "Female (Sweet)",
|
| 212 |
+
"ErXwobaYiN019PkySvjV": "Male (Professional)",
|
| 213 |
+
"TxGEqnHWrfGW9XjX": "Male (Deep)",
|
| 214 |
+
"yoZ06aMxZJJ28mfd3POQ": "Unisex (Friendly)",
|
| 215 |
+
"AZnzlk1XvdvUeBnXmlld": "Female (Strong)"
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
def get_tts_info(self):
|
| 219 |
+
"""Get TTS system information"""
|
| 220 |
+
info = {
|
| 221 |
+
"clients_loaded": self.clients_loaded,
|
| 222 |
+
"advanced_tts_available": self.advanced_tts is not None,
|
| 223 |
+
"robust_tts_available": self.robust_tts is not None,
|
| 224 |
+
"primary_method": "Robust TTS"
|
| 225 |
+
}
|
| 226 |
+
|
| 227 |
+
try:
|
| 228 |
+
if self.advanced_tts and hasattr(self.advanced_tts, 'get_model_info'):
|
| 229 |
+
advanced_info = self.advanced_tts.get_model_info()
|
| 230 |
+
info.update({
|
| 231 |
+
"advanced_tts_loaded": advanced_info.get("models_loaded", False),
|
| 232 |
+
"transformers_available": advanced_info.get("transformers_available", False),
|
| 233 |
+
"primary_method": "Facebook VITS/SpeechT5" if advanced_info.get("models_loaded") else "Robust TTS",
|
| 234 |
+
"device": advanced_info.get("device", "cpu"),
|
| 235 |
+
"vits_available": advanced_info.get("vits_available", False),
|
| 236 |
+
"speecht5_available": advanced_info.get("speecht5_available", False)
|
| 237 |
+
})
|
| 238 |
+
except Exception as e:
|
| 239 |
+
logger.debug(f"Could not get advanced TTS info: {e}")
|
| 240 |
+
|
| 241 |
+
return info
|
| 242 |
+
|
| 243 |
+
# Import the VIDEO-FOCUSED engine
|
| 244 |
+
try:
|
| 245 |
+
from omniavatar_video_engine import video_engine
|
| 246 |
+
VIDEO_ENGINE_AVAILABLE = True
|
| 247 |
+
logger.info("SUCCESS: OmniAvatar Video Engine available")
|
| 248 |
+
except ImportError as e:
|
| 249 |
+
VIDEO_ENGINE_AVAILABLE = False
|
| 250 |
+
logger.error(f"ERROR: OmniAvatar Video Engine not available: {e}")
|
| 251 |
+
|
| 252 |
+
class OmniAvatarAPI:
|
| 253 |
+
def __init__(self):
|
| 254 |
+
self.model_loaded = False
|
| 255 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 256 |
+
self.tts_manager = TTSManager()
|
| 257 |
+
logger.info(f"Using device: {self.device}")
|
| 258 |
+
logger.info("Initialized with robust TTS system")
|
| 259 |
+
|
| 260 |
+
def load_model(self):
|
| 261 |
+
"""Load the OmniAvatar model - now more flexible"""
|
| 262 |
+
try:
|
| 263 |
+
# Check if models are downloaded (but don't require them)
|
| 264 |
+
model_paths = [
|
| 265 |
+
"./pretrained_models/Wan2.1-T2V-14B",
|
| 266 |
+
"./pretrained_models/OmniAvatar-14B",
|
| 267 |
+
"./pretrained_models/wav2vec2-base-960h"
|
| 268 |
+
]
|
| 269 |
+
|
| 270 |
+
missing_models = []
|
| 271 |
+
for path in model_paths:
|
| 272 |
+
if not os.path.exists(path):
|
| 273 |
+
missing_models.append(path)
|
| 274 |
+
|
| 275 |
+
if missing_models:
|
| 276 |
+
logger.warning("WARNING: Some OmniAvatar models not found:")
|
| 277 |
+
for model in missing_models:
|
| 278 |
+
logger.warning(f" - {model}")
|
| 279 |
+
logger.info("TIP: App will run in TTS-only mode (no video generation)")
|
| 280 |
+
logger.info("TIP: To enable full avatar generation, download the required models")
|
| 281 |
+
|
| 282 |
+
# Set as loaded but in limited mode
|
| 283 |
+
self.model_loaded = False # Video generation disabled
|
| 284 |
+
return True # But app can still run
|
| 285 |
+
else:
|
| 286 |
+
self.model_loaded = True
|
| 287 |
+
logger.info("SUCCESS: All OmniAvatar models found - full functionality enabled")
|
| 288 |
+
return True
|
| 289 |
+
|
| 290 |
+
except Exception as e:
|
| 291 |
+
logger.error(f"Error checking models: {str(e)}")
|
| 292 |
+
logger.info("TIP: Continuing in TTS-only mode")
|
| 293 |
+
self.model_loaded = False
|
| 294 |
+
return True # Continue running
|
| 295 |
+
|
| 296 |
+
async def download_file(self, url: str, suffix: str = "") -> str:
|
| 297 |
+
"""Download file from URL and save to temporary location"""
|
| 298 |
+
try:
|
| 299 |
+
async with aiohttp.ClientSession() as session:
|
| 300 |
+
async with session.get(str(url)) as response:
|
| 301 |
+
if response.status != 200:
|
| 302 |
+
raise HTTPException(status_code=400, detail=f"Failed to download file from URL: {url}")
|
| 303 |
+
|
| 304 |
+
content = await response.read()
|
| 305 |
+
|
| 306 |
+
# Create temporary file
|
| 307 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=suffix)
|
| 308 |
+
temp_file.write(content)
|
| 309 |
+
temp_file.close()
|
| 310 |
+
|
| 311 |
+
return temp_file.name
|
| 312 |
+
|
| 313 |
+
except aiohttp.ClientError as e:
|
| 314 |
+
logger.error(f"Network error downloading {url}: {e}")
|
| 315 |
+
raise HTTPException(status_code=400, detail=f"Network error downloading file: {e}")
|
| 316 |
+
except Exception as e:
|
| 317 |
+
logger.error(f"Error downloading file from {url}: {e}")
|
| 318 |
+
raise HTTPException(status_code=500, detail=f"Error downloading file: {e}")
|
| 319 |
+
|
| 320 |
+
def validate_audio_url(self, url: str) -> bool:
|
| 321 |
+
"""Validate if URL is likely an audio file"""
|
| 322 |
+
try:
|
| 323 |
+
parsed = urlparse(url)
|
| 324 |
+
# Check for common audio file extensions
|
| 325 |
+
audio_extensions = ['.mp3', '.wav', '.m4a', '.ogg', '.aac', '.flac']
|
| 326 |
+
is_audio_ext = any(parsed.path.lower().endswith(ext) for ext in audio_extensions)
|
| 327 |
+
|
| 328 |
+
return is_audio_ext or 'audio' in url.lower()
|
| 329 |
+
except:
|
| 330 |
+
return False
|
| 331 |
+
|
| 332 |
+
def validate_image_url(self, url: str) -> bool:
|
| 333 |
+
"""Validate if URL is likely an image file"""
|
| 334 |
+
try:
|
| 335 |
+
parsed = urlparse(url)
|
| 336 |
+
image_extensions = ['.jpg', '.jpeg', '.png', '.webp', '.bmp', '.gif']
|
| 337 |
+
return any(parsed.path.lower().endswith(ext) for ext in image_extensions)
|
| 338 |
+
except:
|
| 339 |
+
return False
|
| 340 |
+
|
| 341 |
+
async def generate_avatar(self, request: GenerateRequest) -> tuple[str, float, bool, str]:
|
| 342 |
+
"""Generate avatar VIDEO - PRIMARY FUNCTIONALITY"""
|
| 343 |
+
import time
|
| 344 |
+
start_time = time.time()
|
| 345 |
+
audio_generated = False
|
| 346 |
+
method_used = "Unknown"
|
| 347 |
+
|
| 348 |
+
logger.info("[VIDEO] STARTING AVATAR VIDEO GENERATION")
|
| 349 |
+
logger.info(f"[INFO] Prompt: {request.prompt}")
|
| 350 |
+
|
| 351 |
+
if VIDEO_ENGINE_AVAILABLE:
|
| 352 |
+
try:
|
| 353 |
+
# PRIORITIZE VIDEO GENERATION
|
| 354 |
+
logger.info("[TARGET] Using OmniAvatar Video Engine for FULL video generation")
|
| 355 |
+
|
| 356 |
+
# Handle audio source
|
| 357 |
+
audio_path = None
|
| 358 |
+
if request.text_to_speech:
|
| 359 |
+
logger.info("[MIC] Generating audio from text...")
|
| 360 |
+
audio_path, method_used = await self.tts_manager.text_to_speech(
|
| 361 |
+
request.text_to_speech,
|
| 362 |
+
request.voice_id or "21m00Tcm4TlvDq8ikWAM"
|
| 363 |
+
)
|
| 364 |
+
audio_generated = True
|
| 365 |
+
elif request.audio_url:
|
| 366 |
+
logger.info("?? Downloading audio from URL...")
|
| 367 |
+
audio_path = await self.download_file(str(request.audio_url), ".mp3")
|
| 368 |
+
method_used = "External Audio"
|
| 369 |
+
else:
|
| 370 |
+
raise HTTPException(status_code=400, detail="Either text_to_speech or audio_url required for video generation")
|
| 371 |
+
|
| 372 |
+
# Handle image if provided
|
| 373 |
+
image_path = None
|
| 374 |
+
if request.image_url:
|
| 375 |
+
logger.info("[IMAGE] Downloading reference image...")
|
| 376 |
+
parsed = urlparse(str(request.image_url))
|
| 377 |
+
ext = os.path.splitext(parsed.path)[1] or ".jpg"
|
| 378 |
+
image_path = await self.download_file(str(request.image_url), ext)
|
| 379 |
+
|
| 380 |
+
# GENERATE VIDEO using OmniAvatar engine
|
| 381 |
+
logger.info("[VIDEO] Generating avatar video with adaptive body animation...")
|
| 382 |
+
video_path, generation_time = video_engine.generate_avatar_video(
|
| 383 |
+
prompt=request.prompt,
|
| 384 |
+
audio_path=audio_path,
|
| 385 |
+
image_path=image_path,
|
| 386 |
+
guidance_scale=request.guidance_scale,
|
| 387 |
+
audio_scale=request.audio_scale,
|
| 388 |
+
num_steps=request.num_steps
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
processing_time = time.time() - start_time
|
| 392 |
+
logger.info(f"SUCCESS: VIDEO GENERATED successfully in {processing_time:.1f}s")
|
| 393 |
+
|
| 394 |
+
# Cleanup temporary files
|
| 395 |
+
if audio_path and os.path.exists(audio_path):
|
| 396 |
+
os.unlink(audio_path)
|
| 397 |
+
if image_path and os.path.exists(image_path):
|
| 398 |
+
os.unlink(image_path)
|
| 399 |
+
|
| 400 |
+
return video_path, processing_time, audio_generated, f"OmniAvatar Video Generation ({method_used})"
|
| 401 |
+
|
| 402 |
+
except Exception as e:
|
| 403 |
+
logger.error(f"ERROR: Video generation failed: {e}")
|
| 404 |
+
# For a VIDEO generation app, we should NOT fall back to audio-only
|
| 405 |
+
# Instead, provide clear guidance
|
| 406 |
+
if "models" in str(e).lower():
|
| 407 |
+
raise HTTPException(
|
| 408 |
+
status_code=503,
|
| 409 |
+
detail=f"Video generation requires OmniAvatar models (~30GB). Please run model download script. Error: {str(e)}"
|
| 410 |
+
)
|
| 411 |
+
else:
|
| 412 |
+
raise HTTPException(status_code=500, detail=f"Video generation failed: {str(e)}")
|
| 413 |
+
|
| 414 |
+
# If video engine not available, this is a critical error for a VIDEO app
|
| 415 |
+
raise HTTPException(
|
| 416 |
+
status_code=503,
|
| 417 |
+
detail="Video generation engine not available. This application requires OmniAvatar models for video generation."
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
async def generate_avatar_BACKUP(self, request: GenerateRequest) -> tuple[str, float, bool, str]:
|
| 421 |
+
"""OLD TTS-ONLY METHOD - kept as backup reference
|
| 422 |
+
"""Generate avatar video from prompt and audio/text - now handles missing models"""
|
| 423 |
+
import time
|
| 424 |
+
start_time = time.time()
|
| 425 |
+
audio_generated = False
|
| 426 |
+
tts_method = None
|
| 427 |
+
|
| 428 |
+
try:
|
| 429 |
+
# Check if video generation is available
|
| 430 |
+
if not self.model_loaded:
|
| 431 |
+
logger.info("??? Running in TTS-only mode (OmniAvatar models not available)")
|
| 432 |
+
|
| 433 |
+
# Only generate audio, no video
|
| 434 |
+
if request.text_to_speech:
|
| 435 |
+
logger.info(f"Generating speech from text: {request.text_to_speech[:50]}...")
|
| 436 |
+
audio_path, tts_method = await self.tts_manager.text_to_speech(
|
| 437 |
+
request.text_to_speech,
|
| 438 |
+
request.voice_id or "21m00Tcm4TlvDq8ikWAM"
|
| 439 |
+
)
|
| 440 |
+
|
| 441 |
+
# Return the audio file as the "output"
|
| 442 |
+
processing_time = time.time() - start_time
|
| 443 |
+
logger.info(f"SUCCESS: TTS completed in {processing_time:.1f}s using {tts_method}")
|
| 444 |
+
return audio_path, processing_time, True, f"{tts_method} (TTS-only mode)"
|
| 445 |
+
else:
|
| 446 |
+
raise HTTPException(
|
| 447 |
+
status_code=503,
|
| 448 |
+
detail="Video generation unavailable. OmniAvatar models not found. Only TTS from text is supported."
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
# Original video generation logic (when models are available)
|
| 452 |
+
# Determine audio source
|
| 453 |
+
audio_path = None
|
| 454 |
+
|
| 455 |
+
if request.text_to_speech:
|
| 456 |
+
# Generate speech from text using TTS manager
|
| 457 |
+
logger.info(f"Generating speech from text: {request.text_to_speech[:50]}...")
|
| 458 |
+
audio_path, tts_method = await self.tts_manager.text_to_speech(
|
| 459 |
+
request.text_to_speech,
|
| 460 |
+
request.voice_id or "21m00Tcm4TlvDq8ikWAM"
|
| 461 |
+
)
|
| 462 |
+
audio_generated = True
|
| 463 |
+
|
| 464 |
+
elif request.audio_url:
|
| 465 |
+
# Download audio from provided URL
|
| 466 |
+
logger.info(f"Downloading audio from URL: {request.audio_url}")
|
| 467 |
+
if not self.validate_audio_url(str(request.audio_url)):
|
| 468 |
+
logger.warning(f"Audio URL may not be valid: {request.audio_url}")
|
| 469 |
+
|
| 470 |
+
audio_path = await self.download_file(str(request.audio_url), ".mp3")
|
| 471 |
+
tts_method = "External Audio URL"
|
| 472 |
+
|
| 473 |
+
else:
|
| 474 |
+
raise HTTPException(
|
| 475 |
+
status_code=400,
|
| 476 |
+
detail="Either text_to_speech or audio_url must be provided"
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
# Download image if provided
|
| 480 |
+
image_path = None
|
| 481 |
+
if request.image_url:
|
| 482 |
+
logger.info(f"Downloading image from URL: {request.image_url}")
|
| 483 |
+
if not self.validate_image_url(str(request.image_url)):
|
| 484 |
+
logger.warning(f"Image URL may not be valid: {request.image_url}")
|
| 485 |
+
|
| 486 |
+
# Determine image extension from URL or default to .jpg
|
| 487 |
+
parsed = urlparse(str(request.image_url))
|
| 488 |
+
ext = os.path.splitext(parsed.path)[1] or ".jpg"
|
| 489 |
+
image_path = await self.download_file(str(request.image_url), ext)
|
| 490 |
+
|
| 491 |
+
# Create temporary input file for inference
|
| 492 |
+
with tempfile.NamedTemporaryFile(mode='w', suffix='.txt', delete=False) as f:
|
| 493 |
+
if image_path:
|
| 494 |
+
input_line = f"{request.prompt}@@{image_path}@@{audio_path}"
|
| 495 |
+
else:
|
| 496 |
+
input_line = f"{request.prompt}@@@@{audio_path}"
|
| 497 |
+
f.write(input_line)
|
| 498 |
+
temp_input_file = f.name
|
| 499 |
+
|
| 500 |
+
# Prepare inference command
|
| 501 |
+
cmd = [
|
| 502 |
+
"python", "-m", "torch.distributed.run",
|
| 503 |
+
"--standalone", f"--nproc_per_node={request.sp_size}",
|
| 504 |
+
"scripts/inference.py",
|
| 505 |
+
"--config", "configs/inference.yaml",
|
| 506 |
+
"--input_file", temp_input_file,
|
| 507 |
+
"--guidance_scale", str(request.guidance_scale),
|
| 508 |
+
"--audio_scale", str(request.audio_scale),
|
| 509 |
+
"--num_steps", str(request.num_steps)
|
| 510 |
+
]
|
| 511 |
+
|
| 512 |
+
if request.tea_cache_l1_thresh:
|
| 513 |
+
cmd.extend(["--tea_cache_l1_thresh", str(request.tea_cache_l1_thresh)])
|
| 514 |
+
|
| 515 |
+
logger.info(f"Running inference with command: {' '.join(cmd)}")
|
| 516 |
+
|
| 517 |
+
# Run inference
|
| 518 |
+
result = subprocess.run(cmd, capture_output=True, text=True)
|
| 519 |
+
|
| 520 |
+
# Clean up temporary files
|
| 521 |
+
os.unlink(temp_input_file)
|
| 522 |
+
os.unlink(audio_path)
|
| 523 |
+
if image_path:
|
| 524 |
+
os.unlink(image_path)
|
| 525 |
+
|
| 526 |
+
if result.returncode != 0:
|
| 527 |
+
logger.error(f"Inference failed: {result.stderr}")
|
| 528 |
+
raise Exception(f"Inference failed: {result.stderr}")
|
| 529 |
+
|
| 530 |
+
# Find output video file
|
| 531 |
+
output_dir = "./outputs"
|
| 532 |
+
if os.path.exists(output_dir):
|
| 533 |
+
video_files = [f for f in os.listdir(output_dir) if f.endswith(('.mp4', '.avi'))]
|
| 534 |
+
if video_files:
|
| 535 |
+
# Return the most recent video file
|
| 536 |
+
video_files.sort(key=lambda x: os.path.getmtime(os.path.join(output_dir, x)), reverse=True)
|
| 537 |
+
output_path = os.path.join(output_dir, video_files[0])
|
| 538 |
+
processing_time = time.time() - start_time
|
| 539 |
+
return output_path, processing_time, audio_generated, tts_method
|
| 540 |
+
|
| 541 |
+
raise Exception("No output video generated")
|
| 542 |
+
|
| 543 |
+
except Exception as e:
|
| 544 |
+
# Clean up any temporary files in case of error
|
| 545 |
+
try:
|
| 546 |
+
if 'audio_path' in locals() and audio_path and os.path.exists(audio_path):
|
| 547 |
+
os.unlink(audio_path)
|
| 548 |
+
if 'image_path' in locals() and image_path and os.path.exists(image_path):
|
| 549 |
+
os.unlink(image_path)
|
| 550 |
+
if 'temp_input_file' in locals() and os.path.exists(temp_input_file):
|
| 551 |
+
os.unlink(temp_input_file)
|
| 552 |
+
except:
|
| 553 |
+
pass
|
| 554 |
+
|
| 555 |
+
logger.error(f"Generation error: {str(e)}")
|
| 556 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 557 |
+
|
| 558 |
+
# Initialize API
|
| 559 |
+
omni_api = OmniAvatarAPI()
|
| 560 |
+
|
| 561 |
+
# Use FastAPI lifespan instead of deprecated on_event
|
| 562 |
+
from contextlib import asynccontextmanager
|
| 563 |
+
|
| 564 |
+
@asynccontextmanager
|
| 565 |
+
async def lifespan(app: FastAPI):
|
| 566 |
+
# Startup
|
| 567 |
+
success = omni_api.load_model()
|
| 568 |
+
if not success:
|
| 569 |
+
logger.warning("WARNING: OmniAvatar model loading failed - running in limited mode")
|
| 570 |
+
|
| 571 |
+
# Load TTS models
|
| 572 |
+
try:
|
| 573 |
+
await omni_api.tts_manager.load_models()
|
| 574 |
+
logger.info("SUCCESS: TTS models initialization completed")
|
| 575 |
+
except Exception as e:
|
| 576 |
+
logger.error(f"ERROR: TTS initialization failed: {e}")
|
| 577 |
+
|
| 578 |
+
yield
|
| 579 |
+
|
| 580 |
+
# Shutdown (if needed)
|
| 581 |
+
logger.info("Application shutting down...")
|
| 582 |
+
|
| 583 |
+
# Create FastAPI app WITH lifespan parameter
|
| 584 |
+
app = FastAPI(
|
| 585 |
+
title="OmniAvatar-14B API with Advanced TTS",
|
| 586 |
+
version="1.0.0",
|
| 587 |
+
lifespan=lifespan
|
| 588 |
+
)
|
| 589 |
+
|
| 590 |
+
# Add CORS middleware
|
| 591 |
+
app.add_middleware(
|
| 592 |
+
CORSMiddleware,
|
| 593 |
+
allow_origins=["*"],
|
| 594 |
+
allow_credentials=True,
|
| 595 |
+
allow_methods=["*"],
|
| 596 |
+
allow_headers=["*"],
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
# Mount static files for serving generated videos
|
| 600 |
+
app.mount("/outputs", StaticFiles(directory="outputs"), name="outputs")
|
| 601 |
+
|
| 602 |
+
@app.get("/health")
|
| 603 |
+
async def health_check():
|
| 604 |
+
"""Health check endpoint"""
|
| 605 |
+
tts_info = omni_api.tts_manager.get_tts_info()
|
| 606 |
+
|
| 607 |
+
return {
|
| 608 |
+
"status": "healthy",
|
| 609 |
+
"model_loaded": omni_api.model_loaded,
|
| 610 |
+
"video_generation_available": omni_api.model_loaded,
|
| 611 |
+
"tts_only_mode": not omni_api.model_loaded,
|
| 612 |
+
"device": omni_api.device,
|
| 613 |
+
"supports_text_to_speech": True,
|
| 614 |
+
"supports_image_urls": omni_api.model_loaded,
|
| 615 |
+
"supports_audio_urls": omni_api.model_loaded,
|
| 616 |
+
"tts_system": "Advanced TTS with Robust Fallback",
|
| 617 |
+
"advanced_tts_available": ADVANCED_TTS_AVAILABLE,
|
| 618 |
+
"robust_tts_available": ROBUST_TTS_AVAILABLE,
|
| 619 |
+
**tts_info
|
| 620 |
+
}
|
| 621 |
+
|
| 622 |
+
@app.get("/voices")
|
| 623 |
+
async def get_voices():
|
| 624 |
+
"""Get available voice configurations"""
|
| 625 |
+
try:
|
| 626 |
+
voices = await omni_api.tts_manager.get_available_voices()
|
| 627 |
+
return {"voices": voices}
|
| 628 |
+
except Exception as e:
|
| 629 |
+
logger.error(f"Error getting voices: {e}")
|
| 630 |
+
return {"error": str(e)}
|
| 631 |
+
|
| 632 |
+
@app.post("/generate", response_model=GenerateResponse)
|
| 633 |
+
async def generate_avatar(request: GenerateRequest):
|
| 634 |
+
"""Generate avatar video from prompt, text/audio, and optional image URL"""
|
| 635 |
+
|
| 636 |
+
logger.info(f"Generating avatar with prompt: {request.prompt}")
|
| 637 |
+
if request.text_to_speech:
|
| 638 |
+
logger.info(f"Text to speech: {request.text_to_speech[:100]}...")
|
| 639 |
+
logger.info(f"Voice ID: {request.voice_id}")
|
| 640 |
+
if request.audio_url:
|
| 641 |
+
logger.info(f"Audio URL: {request.audio_url}")
|
| 642 |
+
if request.image_url:
|
| 643 |
+
logger.info(f"Image URL: {request.image_url}")
|
| 644 |
+
|
| 645 |
+
try:
|
| 646 |
+
output_path, processing_time, audio_generated, tts_method = await omni_api.generate_avatar(request)
|
| 647 |
+
|
| 648 |
+
return GenerateResponse(
|
| 649 |
+
message="Generation completed successfully" + (" (TTS-only mode)" if not omni_api.model_loaded else ""),
|
| 650 |
+
output_path=get_video_url(output_path) if omni_api.model_loaded else output_path,
|
| 651 |
+
processing_time=processing_time,
|
| 652 |
+
audio_generated=audio_generated,
|
| 653 |
+
tts_method=tts_method
|
| 654 |
+
)
|
| 655 |
+
|
| 656 |
+
except HTTPException:
|
| 657 |
+
raise
|
| 658 |
+
except Exception as e:
|
| 659 |
+
logger.error(f"Unexpected error: {e}")
|
| 660 |
+
raise HTTPException(status_code=500, detail=f"Unexpected error: {e}")
|
| 661 |
+
|
| 662 |
+
# Enhanced Gradio interface
|
| 663 |
+
def gradio_generate(prompt, text_to_speech, audio_url, image_url, voice_id, guidance_scale, audio_scale, num_steps):
|
| 664 |
+
"""Gradio interface wrapper with robust TTS support"""
|
| 665 |
+
try:
|
| 666 |
+
# Create request object
|
| 667 |
+
request_data = {
|
| 668 |
+
"prompt": prompt,
|
| 669 |
+
"guidance_scale": guidance_scale,
|
| 670 |
+
"audio_scale": audio_scale,
|
| 671 |
+
"num_steps": int(num_steps)
|
| 672 |
+
}
|
| 673 |
+
|
| 674 |
+
# Add audio source
|
| 675 |
+
if text_to_speech and text_to_speech.strip():
|
| 676 |
+
request_data["text_to_speech"] = text_to_speech
|
| 677 |
+
request_data["voice_id"] = voice_id or "21m00Tcm4TlvDq8ikWAM"
|
| 678 |
+
elif audio_url and audio_url.strip():
|
| 679 |
+
if omni_api.model_loaded:
|
| 680 |
+
request_data["audio_url"] = audio_url
|
| 681 |
+
else:
|
| 682 |
+
return "Error: Audio URL input requires full OmniAvatar models. Please use text-to-speech instead."
|
| 683 |
+
else:
|
| 684 |
+
return "Error: Please provide either text to speech or audio URL"
|
| 685 |
+
|
| 686 |
+
if image_url and image_url.strip():
|
| 687 |
+
if omni_api.model_loaded:
|
| 688 |
+
request_data["image_url"] = image_url
|
| 689 |
+
else:
|
| 690 |
+
return "Error: Image URL input requires full OmniAvatar models for video generation."
|
| 691 |
+
|
| 692 |
+
request = GenerateRequest(**request_data)
|
| 693 |
+
|
| 694 |
+
# Run async function in sync context
|
| 695 |
+
loop = asyncio.new_event_loop()
|
| 696 |
+
asyncio.set_event_loop(loop)
|
| 697 |
+
output_path, processing_time, audio_generated, tts_method = loop.run_until_complete(omni_api.generate_avatar(request))
|
| 698 |
+
loop.close()
|
| 699 |
+
|
| 700 |
+
success_message = f"SUCCESS: Generation completed in {processing_time:.1f}s using {tts_method}"
|
| 701 |
+
print(success_message)
|
| 702 |
+
|
| 703 |
+
if omni_api.model_loaded:
|
| 704 |
+
return output_path
|
| 705 |
+
else:
|
| 706 |
+
return f"??? TTS Audio generated successfully using {tts_method}\nFile: {output_path}\n\nWARNING: Video generation unavailable (OmniAvatar models not found)"
|
| 707 |
+
|
| 708 |
+
except Exception as e:
|
| 709 |
+
logger.error(f"Gradio generation error: {e}")
|
| 710 |
+
return f"Error: {str(e)}"
|
| 711 |
+
|
| 712 |
+
# Create Gradio interface
|
| 713 |
+
mode_info = " (TTS-Only Mode)" if not omni_api.model_loaded else ""
|
| 714 |
+
description_extra = """
|
| 715 |
+
WARNING: Running in TTS-Only Mode - OmniAvatar models not found. Only text-to-speech generation is available.
|
| 716 |
+
To enable full video generation, the required model files need to be downloaded.
|
| 717 |
+
""" if not omni_api.model_loaded else ""
|
| 718 |
+
|
| 719 |
+
iface = gr.Interface(
|
| 720 |
+
fn=gradio_generate,
|
| 721 |
+
inputs=[
|
| 722 |
+
gr.Textbox(
|
| 723 |
+
label="Prompt",
|
| 724 |
+
placeholder="Describe the character behavior (e.g., 'A friendly person explaining a concept')",
|
| 725 |
+
lines=2
|
| 726 |
+
),
|
| 727 |
+
gr.Textbox(
|
| 728 |
+
label="Text to Speech",
|
| 729 |
+
placeholder="Enter text to convert to speech",
|
| 730 |
+
lines=3,
|
| 731 |
+
info="Will use best available TTS system (Advanced or Fallback)"
|
| 732 |
+
),
|
| 733 |
+
gr.Textbox(
|
| 734 |
+
label="OR Audio URL",
|
| 735 |
+
placeholder="https://example.com/audio.mp3",
|
| 736 |
+
info="Direct URL to audio file (requires full models)" if not omni_api.model_loaded else "Direct URL to audio file"
|
| 737 |
+
),
|
| 738 |
+
gr.Textbox(
|
| 739 |
+
label="Image URL (Optional)",
|
| 740 |
+
placeholder="https://example.com/image.jpg",
|
| 741 |
+
info="Direct URL to reference image (requires full models)" if not omni_api.model_loaded else "Direct URL to reference image"
|
| 742 |
+
),
|
| 743 |
+
gr.Dropdown(
|
| 744 |
+
choices=[
|
| 745 |
+
"21m00Tcm4TlvDq8ikWAM",
|
| 746 |
+
"pNInz6obpgDQGcFmaJgB",
|
| 747 |
+
"EXAVITQu4vr4xnSDxMaL",
|
| 748 |
+
"ErXwobaYiN019PkySvjV",
|
| 749 |
+
"TxGEqnHWrfGW9XjX",
|
| 750 |
+
"yoZ06aMxZJJ28mfd3POQ",
|
| 751 |
+
"AZnzlk1XvdvUeBnXmlld"
|
| 752 |
+
],
|
| 753 |
+
value="21m00Tcm4TlvDq8ikWAM",
|
| 754 |
+
label="Voice Profile",
|
| 755 |
+
info="Choose voice characteristics for TTS generation"
|
| 756 |
+
),
|
| 757 |
+
gr.Slider(minimum=1, maximum=10, value=5.0, label="Guidance Scale", info="4-6 recommended"),
|
| 758 |
+
gr.Slider(minimum=1, maximum=10, value=3.0, label="Audio Scale", info="Higher values = better lip-sync"),
|
| 759 |
+
gr.Slider(minimum=10, maximum=100, value=30, step=1, label="Number of Steps", info="20-50 recommended")
|
| 760 |
+
],
|
| 761 |
+
outputs=gr.Video(label="Generated Avatar Video") if omni_api.model_loaded else gr.Textbox(label="TTS Output"),
|
| 762 |
+
title="[VIDEO] OmniAvatar-14B - Avatar Video Generation with Adaptive Body Animation",
|
| 763 |
+
description=f"""
|
| 764 |
+
Generate avatar videos with lip-sync from text prompts and speech using robust TTS system.
|
| 765 |
+
|
| 766 |
+
{description_extra}
|
| 767 |
+
|
| 768 |
+
**Robust TTS Architecture**
|
| 769 |
+
- **Primary**: Advanced TTS (Facebook VITS & SpeechT5) if available
|
| 770 |
+
- **Fallback**: Robust tone generation for 100% reliability
|
| 771 |
+
- **Automatic**: Seamless switching between methods
|
| 772 |
+
|
| 773 |
+
**Features:**
|
| 774 |
+
- **Guaranteed Generation**: Always produces audio output
|
| 775 |
+
- **No Dependencies**: Works even without advanced models
|
| 776 |
+
- **High Availability**: Multiple fallback layers
|
| 777 |
+
- **Voice Profiles**: Multiple voice characteristics
|
| 778 |
+
- **Audio URL Support**: Use external audio files {"(full models required)" if not omni_api.model_loaded else ""}
|
| 779 |
+
- **Image URL Support**: Reference images for characters {"(full models required)" if not omni_api.model_loaded else ""}
|
| 780 |
+
|
| 781 |
+
**Usage:**
|
| 782 |
+
1. Enter a character description in the prompt
|
| 783 |
+
2. **Enter text for speech generation** (recommended in current mode)
|
| 784 |
+
3. {"Optionally add reference image/audio URLs (requires full models)" if not omni_api.model_loaded else "Optionally add reference image URL and choose audio source"}
|
| 785 |
+
4. Choose voice profile and adjust parameters
|
| 786 |
+
5. Generate your {"audio" if not omni_api.model_loaded else "avatar video"}!
|
| 787 |
+
""",
|
| 788 |
+
examples=[
|
| 789 |
+
[
|
| 790 |
+
"A professional teacher explaining a mathematical concept with clear gestures",
|
| 791 |
+
"Hello students! Today we're going to learn about calculus and derivatives.",
|
| 792 |
+
"",
|
| 793 |
+
"",
|
| 794 |
+
"21m00Tcm4TlvDq8ikWAM",
|
| 795 |
+
5.0,
|
| 796 |
+
3.5,
|
| 797 |
+
30
|
| 798 |
+
],
|
| 799 |
+
[
|
| 800 |
+
"A friendly presenter speaking confidently to an audience",
|
| 801 |
+
"Welcome everyone to our presentation on artificial intelligence!",
|
| 802 |
+
"",
|
| 803 |
+
"",
|
| 804 |
+
"pNInz6obpgDQGcFmaJgB",
|
| 805 |
+
5.5,
|
| 806 |
+
4.0,
|
| 807 |
+
35
|
| 808 |
+
]
|
| 809 |
+
],
|
| 810 |
+
allow_flagging="never",
|
| 811 |
+
flagging_dir="/tmp/gradio_flagged"
|
| 812 |
+
)
|
| 813 |
+
|
| 814 |
+
# Mount Gradio app
|
| 815 |
+
app = gr.mount_gradio_app(app, iface, path="/gradio")
|
| 816 |
+
|
| 817 |
+
if __name__ == "__main__":
|
| 818 |
+
import uvicorn
|
| 819 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 820 |
+
|
| 821 |
+
|
| 822 |
+
|
| 823 |
+
|
| 824 |
+
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
|