Spaces:
Build error
Build error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| from functools import partial | |
| from itertools import product | |
| import json | |
| import math | |
| import os | |
| import random | |
| import typing as tp | |
| import pytest | |
| import torch | |
| from torch.utils.data import DataLoader | |
| from audiocraft.data.audio_dataset import ( | |
| AudioDataset, | |
| AudioMeta, | |
| _get_audio_meta, | |
| load_audio_meta, | |
| save_audio_meta | |
| ) | |
| from audiocraft.data.zip import PathInZip | |
| from ..common_utils import TempDirMixin, get_white_noise, save_wav | |
| class TestAudioMeta(TempDirMixin): | |
| def test_get_audio_meta(self): | |
| sample_rates = [8000, 16_000] | |
| channels = [1, 2] | |
| duration = 1. | |
| for sample_rate, ch in product(sample_rates, channels): | |
| n_frames = int(duration * sample_rate) | |
| wav = get_white_noise(ch, n_frames) | |
| path = self.get_temp_path('sample.wav') | |
| save_wav(path, wav, sample_rate) | |
| m = _get_audio_meta(path, minimal=True) | |
| assert m.path == path, 'path does not match' | |
| assert m.sample_rate == sample_rate, 'sample rate does not match' | |
| assert m.duration == duration, 'duration does not match' | |
| assert m.amplitude is None | |
| assert m.info_path is None | |
| def test_save_audio_meta(self): | |
| audio_meta = [ | |
| AudioMeta("mypath1", 1., 16_000, None, None, PathInZip('/foo/bar.zip:/relative/file1.json')), | |
| AudioMeta("mypath2", 2., 16_000, None, None, PathInZip('/foo/bar.zip:/relative/file2.json')) | |
| ] | |
| empty_audio_meta = [] | |
| for idx, meta in enumerate([audio_meta, empty_audio_meta]): | |
| path = self.get_temp_path(f'data_{idx}_save.jsonl') | |
| save_audio_meta(path, meta) | |
| with open(path, 'r') as f: | |
| lines = f.readlines() | |
| read_meta = [AudioMeta.from_dict(json.loads(line)) for line in lines] | |
| assert len(read_meta) == len(meta) | |
| for m, read_m in zip(meta, read_meta): | |
| assert m == read_m | |
| def test_load_audio_meta(self): | |
| try: | |
| import dora | |
| except ImportError: | |
| dora = None # type: ignore | |
| audio_meta = [ | |
| AudioMeta("mypath1", 1., 16_000, None, None, PathInZip('/foo/bar.zip:/relative/file1.json')), | |
| AudioMeta("mypath2", 2., 16_000, None, None, PathInZip('/foo/bar.zip:/relative/file2.json')) | |
| ] | |
| empty_meta = [] | |
| for idx, meta in enumerate([audio_meta, empty_meta]): | |
| path = self.get_temp_path(f'data_{idx}_load.jsonl') | |
| with open(path, 'w') as f: | |
| for m in meta: | |
| json_str = json.dumps(m.to_dict()) + '\n' | |
| f.write(json_str) | |
| read_meta = load_audio_meta(path) | |
| assert len(read_meta) == len(meta) | |
| for m, read_m in zip(meta, read_meta): | |
| if dora: | |
| m.path = dora.git_save.to_absolute_path(m.path) | |
| assert m == read_m, f'original={m}, read={read_m}' | |
| class TestAudioDataset(TempDirMixin): | |
| def _create_audio_files(self, | |
| root_name: str, | |
| num_examples: int, | |
| durations: tp.Union[float, tp.Tuple[float, float]] = (0.1, 1.), | |
| sample_rate: int = 16_000, | |
| channels: int = 1): | |
| root_dir = self.get_temp_dir(root_name) | |
| for i in range(num_examples): | |
| if isinstance(durations, float): | |
| duration = durations | |
| elif isinstance(durations, tuple) and len(durations) == 1: | |
| duration = durations[0] | |
| elif isinstance(durations, tuple) and len(durations) == 2: | |
| duration = random.uniform(durations[0], durations[1]) | |
| else: | |
| assert False | |
| n_frames = int(duration * sample_rate) | |
| wav = get_white_noise(channels, n_frames) | |
| path = os.path.join(root_dir, f'example_{i}.wav') | |
| save_wav(path, wav, sample_rate) | |
| return root_dir | |
| def _create_audio_dataset(self, | |
| root_name: str, | |
| total_num_examples: int, | |
| durations: tp.Union[float, tp.Tuple[float, float]] = (0.1, 1.), | |
| sample_rate: int = 16_000, | |
| channels: int = 1, | |
| segment_duration: tp.Optional[float] = None, | |
| num_examples: int = 10, | |
| shuffle: bool = True, | |
| return_info: bool = False): | |
| root_dir = self._create_audio_files(root_name, total_num_examples, durations, sample_rate, channels) | |
| dataset = AudioDataset.from_path(root_dir, | |
| minimal_meta=True, | |
| segment_duration=segment_duration, | |
| num_samples=num_examples, | |
| sample_rate=sample_rate, | |
| channels=channels, | |
| shuffle=shuffle, | |
| return_info=return_info) | |
| return dataset | |
| def test_dataset_full(self): | |
| total_examples = 10 | |
| min_duration, max_duration = 1., 4. | |
| sample_rate = 16_000 | |
| channels = 1 | |
| dataset = self._create_audio_dataset( | |
| 'dset', total_examples, durations=(min_duration, max_duration), | |
| sample_rate=sample_rate, channels=channels, segment_duration=None) | |
| assert len(dataset) == total_examples | |
| assert dataset.sample_rate == sample_rate | |
| assert dataset.channels == channels | |
| for idx in range(len(dataset)): | |
| sample = dataset[idx] | |
| assert sample.shape[0] == channels | |
| assert sample.shape[1] <= int(max_duration * sample_rate) | |
| assert sample.shape[1] >= int(min_duration * sample_rate) | |
| def test_dataset_segment(self): | |
| total_examples = 10 | |
| num_samples = 20 | |
| min_duration, max_duration = 1., 4. | |
| segment_duration = 1. | |
| sample_rate = 16_000 | |
| channels = 1 | |
| dataset = self._create_audio_dataset( | |
| 'dset', total_examples, durations=(min_duration, max_duration), sample_rate=sample_rate, | |
| channels=channels, segment_duration=segment_duration, num_examples=num_samples) | |
| assert len(dataset) == num_samples | |
| assert dataset.sample_rate == sample_rate | |
| assert dataset.channels == channels | |
| for idx in range(len(dataset)): | |
| sample = dataset[idx] | |
| assert sample.shape[0] == channels | |
| assert sample.shape[1] == int(segment_duration * sample_rate) | |
| def test_dataset_equal_audio_and_segment_durations(self): | |
| total_examples = 1 | |
| num_samples = 2 | |
| audio_duration = 1. | |
| segment_duration = 1. | |
| sample_rate = 16_000 | |
| channels = 1 | |
| dataset = self._create_audio_dataset( | |
| 'dset', total_examples, durations=audio_duration, sample_rate=sample_rate, | |
| channels=channels, segment_duration=segment_duration, num_examples=num_samples) | |
| assert len(dataset) == num_samples | |
| assert dataset.sample_rate == sample_rate | |
| assert dataset.channels == channels | |
| for idx in range(len(dataset)): | |
| sample = dataset[idx] | |
| assert sample.shape[0] == channels | |
| assert sample.shape[1] == int(segment_duration * sample_rate) | |
| # the random seek_time adds variability on audio read | |
| sample_1 = dataset[0] | |
| sample_2 = dataset[1] | |
| assert not torch.allclose(sample_1, sample_2) | |
| def test_dataset_samples(self): | |
| total_examples = 1 | |
| num_samples = 2 | |
| audio_duration = 1. | |
| segment_duration = 1. | |
| sample_rate = 16_000 | |
| channels = 1 | |
| create_dataset = partial( | |
| self._create_audio_dataset, | |
| 'dset', total_examples, durations=audio_duration, sample_rate=sample_rate, | |
| channels=channels, segment_duration=segment_duration, num_examples=num_samples, | |
| ) | |
| dataset = create_dataset(shuffle=True) | |
| # when shuffle = True, we have different inputs for the same index across epoch | |
| sample_1 = dataset[0] | |
| sample_2 = dataset[0] | |
| assert not torch.allclose(sample_1, sample_2) | |
| dataset_noshuffle = create_dataset(shuffle=False) | |
| # when shuffle = False, we have same inputs for the same index across epoch | |
| sample_1 = dataset_noshuffle[0] | |
| sample_2 = dataset_noshuffle[0] | |
| assert torch.allclose(sample_1, sample_2) | |
| def test_dataset_return_info(self): | |
| total_examples = 10 | |
| num_samples = 20 | |
| min_duration, max_duration = 1., 4. | |
| segment_duration = 1. | |
| sample_rate = 16_000 | |
| channels = 1 | |
| dataset = self._create_audio_dataset( | |
| 'dset', total_examples, durations=(min_duration, max_duration), sample_rate=sample_rate, | |
| channels=channels, segment_duration=segment_duration, num_examples=num_samples, return_info=True) | |
| assert len(dataset) == num_samples | |
| assert dataset.sample_rate == sample_rate | |
| assert dataset.channels == channels | |
| for idx in range(len(dataset)): | |
| sample, segment_info = dataset[idx] | |
| assert sample.shape[0] == channels | |
| assert sample.shape[1] == int(segment_duration * sample_rate) | |
| assert segment_info.sample_rate == sample_rate | |
| assert segment_info.total_frames == int(segment_duration * sample_rate) | |
| assert segment_info.n_frames <= int(segment_duration * sample_rate) | |
| assert segment_info.seek_time >= 0 | |
| def test_dataset_return_info_no_segment_duration(self): | |
| total_examples = 10 | |
| num_samples = 20 | |
| min_duration, max_duration = 1., 4. | |
| segment_duration = None | |
| sample_rate = 16_000 | |
| channels = 1 | |
| dataset = self._create_audio_dataset( | |
| 'dset', total_examples, durations=(min_duration, max_duration), sample_rate=sample_rate, | |
| channels=channels, segment_duration=segment_duration, num_examples=num_samples, return_info=True) | |
| assert len(dataset) == total_examples | |
| assert dataset.sample_rate == sample_rate | |
| assert dataset.channels == channels | |
| for idx in range(len(dataset)): | |
| sample, segment_info = dataset[idx] | |
| assert sample.shape[0] == channels | |
| assert sample.shape[1] == segment_info.total_frames | |
| assert segment_info.sample_rate == sample_rate | |
| assert segment_info.n_frames <= segment_info.total_frames | |
| def test_dataset_collate_fn(self): | |
| total_examples = 10 | |
| num_samples = 20 | |
| min_duration, max_duration = 1., 4. | |
| segment_duration = 1. | |
| sample_rate = 16_000 | |
| channels = 1 | |
| dataset = self._create_audio_dataset( | |
| 'dset', total_examples, durations=(min_duration, max_duration), sample_rate=sample_rate, | |
| channels=channels, segment_duration=segment_duration, num_examples=num_samples, return_info=False) | |
| batch_size = 4 | |
| dataloader = DataLoader( | |
| dataset, | |
| batch_size=batch_size, | |
| num_workers=0 | |
| ) | |
| for idx, batch in enumerate(dataloader): | |
| assert batch.shape[0] == batch_size | |
| def test_dataset_with_meta_collate_fn(self, segment_duration): | |
| total_examples = 10 | |
| num_samples = 20 | |
| min_duration, max_duration = 1., 4. | |
| segment_duration = 1. | |
| sample_rate = 16_000 | |
| channels = 1 | |
| dataset = self._create_audio_dataset( | |
| 'dset', total_examples, durations=(min_duration, max_duration), sample_rate=sample_rate, | |
| channels=channels, segment_duration=segment_duration, num_examples=num_samples, return_info=True) | |
| batch_size = 4 | |
| dataloader = DataLoader( | |
| dataset, | |
| batch_size=batch_size, | |
| collate_fn=dataset.collater, | |
| num_workers=0 | |
| ) | |
| for idx, batch in enumerate(dataloader): | |
| wav, infos = batch | |
| assert wav.shape[0] == batch_size | |
| assert len(infos) == batch_size | |
| def test_sample_with_weight(self, segment_duration, sample_on_weight, sample_on_duration, a_hist, b_hist, c_hist): | |
| random.seed(1234) | |
| rng = torch.Generator() | |
| rng.manual_seed(1234) | |
| def _get_histogram(dataset, repetitions=20_000): | |
| counts = {file_meta.path: 0. for file_meta in meta} | |
| for _ in range(repetitions): | |
| file_meta = dataset.sample_file(rng) | |
| counts[file_meta.path] += 1 | |
| return {name: count / repetitions for name, count in counts.items()} | |
| meta = [ | |
| AudioMeta(path='a', duration=5, sample_rate=1, weight=2), | |
| AudioMeta(path='b', duration=10, sample_rate=1, weight=None), | |
| AudioMeta(path='c', duration=5, sample_rate=1, weight=0), | |
| ] | |
| dataset = AudioDataset( | |
| meta, segment_duration=segment_duration, sample_on_weight=sample_on_weight, | |
| sample_on_duration=sample_on_duration) | |
| hist = _get_histogram(dataset) | |
| assert math.isclose(hist['a'], a_hist, abs_tol=0.01) | |
| assert math.isclose(hist['b'], b_hist, abs_tol=0.01) | |
| assert math.isclose(hist['c'], c_hist, abs_tol=0.01) | |
| def test_meta_duration_filter_all(self): | |
| meta = [ | |
| AudioMeta(path='a', duration=5, sample_rate=1, weight=2), | |
| AudioMeta(path='b', duration=10, sample_rate=1, weight=None), | |
| AudioMeta(path='c', duration=5, sample_rate=1, weight=0), | |
| ] | |
| try: | |
| AudioDataset(meta, segment_duration=11, min_segment_ratio=1) | |
| assert False | |
| except AssertionError: | |
| assert True | |
| def test_meta_duration_filter_long(self): | |
| meta = [ | |
| AudioMeta(path='a', duration=5, sample_rate=1, weight=2), | |
| AudioMeta(path='b', duration=10, sample_rate=1, weight=None), | |
| AudioMeta(path='c', duration=5, sample_rate=1, weight=0), | |
| ] | |
| dataset = AudioDataset(meta, segment_duration=None, min_segment_ratio=1, max_audio_duration=7) | |
| assert len(dataset) == 2 | |