Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
|
6 |
+
# Load SentenceTransformer model
|
7 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
8 |
+
|
9 |
+
def process_text(text):
|
10 |
+
# Remove ASCII characters and lowercase
|
11 |
+
cleaned = re.sub(r'[^\x00-\x7F]+', '', text).lower()
|
12 |
+
|
13 |
+
# Get token embeddings
|
14 |
+
token_embeddings = model.encode(cleaned, output_value='token_embeddings', convert_to_tensor=True)
|
15 |
+
tokens = model.tokenizer.tokenize(cleaned)
|
16 |
+
|
17 |
+
# Pair each token with its embedding (truncated for display)
|
18 |
+
result = []
|
19 |
+
for token, emb in zip(tokens, token_embeddings):
|
20 |
+
result.append([token, str(emb[:5].tolist()) + '...']) # truncate vector
|
21 |
+
|
22 |
+
return result
|
23 |
+
|
24 |
+
# Gradio interface
|
25 |
+
gr.Interface(
|
26 |
+
fn=process_text,
|
27 |
+
inputs=gr.Textbox(lines=4, placeholder="Enter text here..."),
|
28 |
+
outputs=gr.Dataframe(headers=["Token", "Embedding (truncated)"]),
|
29 |
+
title="SentenceTransformer Token Embeddings",
|
30 |
+
description="Removes ASCII, lowercases input, tokenizes and embeds with SentenceTransformer."
|
31 |
+
).launch()
|