Spaces:
Runtime error
Runtime error
File size: 6,482 Bytes
4b76aa5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import librosa
import sherpa_ncnn
import os
import time
import gradio as gr
import numpy as np
from functools import lru_cache
from pathlib import Path
from huggingface_hub import Repository
AUTH_TOKEN = os.getenv("AUTH_TOKEN")
language_to_models = {
"id": [
"bookbot/sherpa-ncnn-pruned-transducer-stateless7-streaming-id",
],
}
language_choices = list(language_to_models.keys())
streaming_recognizer = None
def recognize(
language: str,
repo_id: str,
decoding_method: str,
num_active_paths: int,
in_filename: str,
):
recognizer = get_pretrained_model(
repo_id,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
audio, sr = librosa.load(in_filename, sr=16_000)
samples_per_read = int(0.32 * sr)
recognized_text = ""
for i in range(0, len(audio), samples_per_read):
chunk = audio[i : i + samples_per_read]
recognizer.accept_waveform(sr, chunk)
transcript = recognizer.text
if transcript:
recognized_text = transcript
tail_paddings = np.zeros(int(recognizer.sample_rate * 0.5), dtype=np.float32)
recognizer.accept_waveform(recognizer.sample_rate, tail_paddings)
recognizer.input_finished()
transcript = recognizer.text
if transcript:
recognized_text = transcript
return recognized_text
def initialize_streaming_model(
repo_id: str, decoding_method: str, num_active_paths: int
):
streaming_recognizer = get_pretrained_model(
repo_id, decoding_method, num_active_paths
)
print("Re-intialized model!")
@lru_cache(maxsize=10)
def get_pretrained_model(repo_id: str, decoding_method: str, num_active_paths: int):
model_name = Path(repo_id.split("/")[-1])
_ = Repository(
local_dir=model_name,
clone_from=repo_id,
token=AUTH_TOKEN,
)
return sherpa_ncnn.Recognizer(
tokens=str(model_name / "tokens.txt"),
encoder_param=str(model_name / "encoder_jit_trace-pnnx.ncnn.param"),
encoder_bin=str(model_name / "encoder_jit_trace-pnnx.ncnn.bin"),
decoder_param=str(model_name / "decoder_jit_trace-pnnx.ncnn.param"),
decoder_bin=str(model_name / "decoder_jit_trace-pnnx.ncnn.bin"),
joiner_param=str(model_name / "joiner_jit_trace-pnnx.ncnn.param"),
joiner_bin=str(model_name / "joiner_jit_trace-pnnx.ncnn.bin"),
num_threads=os.cpu_count(),
decoding_method=decoding_method,
num_active_paths=num_active_paths,
enable_endpoint_detection=True,
rule1_min_trailing_silence=30,
rule2_min_trailing_silence=30,
rule3_min_utterance_length=30,
)
def process_uploaded_file(
language: str,
repo_id: str,
decoding_method: str,
num_active_paths: int,
in_filename: str,
):
return recognize(
in_filename=in_filename,
language=language,
repo_id=repo_id,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
def recognize_audio_from_mic(
in_filename: str,
state: str,
):
audio, sr = librosa.load(in_filename, sr=16_000)
streaming_recognizer.accept_waveform(sr, audio)
time.sleep(0.32)
transcript = streaming_recognizer.text
if transcript:
state = transcript
return state, state
def update_model_dropdown(language: str):
if language in language_to_models:
choices = language_to_models[language]
return gr.Dropdown.update(choices=choices, value=choices[0])
raise ValueError(f"Unsupported language: {language}")
with gr.Blocks() as demo:
gr.Markdown("# Automatic Speech Recognition with Next-gen Kaldi")
language_radio = gr.Radio(
label="Language", choices=language_choices, value=language_choices[0]
)
model_dropdown = gr.Dropdown(
choices=language_to_models[language_choices[0]],
label="Select a model",
value=language_to_models[language_choices[0]][0],
)
language_radio.change(
update_model_dropdown,
inputs=language_radio,
outputs=model_dropdown,
)
decoding_method_radio = gr.Radio(
label="Decoding method",
choices=["greedy_search", "modified_beam_search"],
value="greedy_search",
)
num_active_paths_slider = gr.Slider(
minimum=1,
value=4,
step=1,
label="Number of active paths for modified_beam_search",
)
with gr.Tab("File Upload"):
uploaded_file = gr.Audio(
source="upload", # Choose between "microphone", "upload"
type="filepath",
label="Upload audio file",
)
uploaded_output = gr.Textbox(label="Recognized speech from uploaded file")
with gr.Row():
upload_button = gr.Button("Recognize audio")
upload_clear_button = gr.ClearButton(
components=[uploaded_file, uploaded_output]
)
with gr.Tab("Real-time Microphone Recognition"):
if streaming_recognizer is None:
streaming_recognizer = get_pretrained_model(
model_dropdown.value,
decoding_method_radio.value,
num_active_paths_slider.value,
)
print("Model initialized!")
model_dropdown.change(
fn=initialize_streaming_model,
inputs=[
model_dropdown,
decoding_method_radio,
num_active_paths_slider,
],
)
state = gr.State(value="")
mic_input_audio = gr.Audio(
source="microphone",
type="filepath",
label="Upload audio file",
)
mic_text_output = gr.Textbox(label="Recognized speech from microphone")
mic_input_audio.stream(
fn=recognize_audio_from_mic,
inputs=[mic_input_audio, state],
outputs=[mic_text_output, state],
show_progress=False,
)
with gr.Row():
file_clear_button = gr.ClearButton(
components=[mic_text_output, state]
).click(streaming_recognizer.reset)
upload_button.click(
process_uploaded_file,
inputs=[
language_radio,
model_dropdown,
decoding_method_radio,
num_active_paths_slider,
uploaded_file,
],
outputs=uploaded_output,
)
demo.launch(debug=True)
|