File size: 6,482 Bytes
4b76aa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import librosa
import sherpa_ncnn
import os
import time
import gradio as gr
import numpy as np

from functools import lru_cache
from pathlib import Path
from huggingface_hub import Repository

AUTH_TOKEN = os.getenv("AUTH_TOKEN")

language_to_models = {
    "id": [
        "bookbot/sherpa-ncnn-pruned-transducer-stateless7-streaming-id",
    ],
}

language_choices = list(language_to_models.keys())

streaming_recognizer = None


def recognize(
    language: str,
    repo_id: str,
    decoding_method: str,
    num_active_paths: int,
    in_filename: str,
):
    recognizer = get_pretrained_model(
        repo_id,
        decoding_method=decoding_method,
        num_active_paths=num_active_paths,
    )

    audio, sr = librosa.load(in_filename, sr=16_000)
    samples_per_read = int(0.32 * sr)
    recognized_text = ""

    for i in range(0, len(audio), samples_per_read):
        chunk = audio[i : i + samples_per_read]
        recognizer.accept_waveform(sr, chunk)
        transcript = recognizer.text
        if transcript:
            recognized_text = transcript

    tail_paddings = np.zeros(int(recognizer.sample_rate * 0.5), dtype=np.float32)
    recognizer.accept_waveform(recognizer.sample_rate, tail_paddings)

    recognizer.input_finished()
    transcript = recognizer.text
    if transcript:
        recognized_text = transcript

    return recognized_text


def initialize_streaming_model(
    repo_id: str, decoding_method: str, num_active_paths: int
):
    streaming_recognizer = get_pretrained_model(
        repo_id, decoding_method, num_active_paths
    )
    print("Re-intialized model!")


@lru_cache(maxsize=10)
def get_pretrained_model(repo_id: str, decoding_method: str, num_active_paths: int):
    model_name = Path(repo_id.split("/")[-1])
    _ = Repository(
        local_dir=model_name,
        clone_from=repo_id,
        token=AUTH_TOKEN,
    )

    return sherpa_ncnn.Recognizer(
        tokens=str(model_name / "tokens.txt"),
        encoder_param=str(model_name / "encoder_jit_trace-pnnx.ncnn.param"),
        encoder_bin=str(model_name / "encoder_jit_trace-pnnx.ncnn.bin"),
        decoder_param=str(model_name / "decoder_jit_trace-pnnx.ncnn.param"),
        decoder_bin=str(model_name / "decoder_jit_trace-pnnx.ncnn.bin"),
        joiner_param=str(model_name / "joiner_jit_trace-pnnx.ncnn.param"),
        joiner_bin=str(model_name / "joiner_jit_trace-pnnx.ncnn.bin"),
        num_threads=os.cpu_count(),
        decoding_method=decoding_method,
        num_active_paths=num_active_paths,
        enable_endpoint_detection=True,
        rule1_min_trailing_silence=30,
        rule2_min_trailing_silence=30,
        rule3_min_utterance_length=30,
    )


def process_uploaded_file(
    language: str,
    repo_id: str,
    decoding_method: str,
    num_active_paths: int,
    in_filename: str,
):
    return recognize(
        in_filename=in_filename,
        language=language,
        repo_id=repo_id,
        decoding_method=decoding_method,
        num_active_paths=num_active_paths,
    )


def recognize_audio_from_mic(
    in_filename: str,
    state: str,
):
    audio, sr = librosa.load(in_filename, sr=16_000)
    streaming_recognizer.accept_waveform(sr, audio)
    time.sleep(0.32)
    transcript = streaming_recognizer.text
    if transcript:
        state = transcript
    return state, state


def update_model_dropdown(language: str):
    if language in language_to_models:
        choices = language_to_models[language]
        return gr.Dropdown.update(choices=choices, value=choices[0])
    raise ValueError(f"Unsupported language: {language}")


with gr.Blocks() as demo:
    gr.Markdown("# Automatic Speech Recognition with Next-gen Kaldi")

    language_radio = gr.Radio(
        label="Language", choices=language_choices, value=language_choices[0]
    )
    model_dropdown = gr.Dropdown(
        choices=language_to_models[language_choices[0]],
        label="Select a model",
        value=language_to_models[language_choices[0]][0],
    )

    language_radio.change(
        update_model_dropdown,
        inputs=language_radio,
        outputs=model_dropdown,
    )

    decoding_method_radio = gr.Radio(
        label="Decoding method",
        choices=["greedy_search", "modified_beam_search"],
        value="greedy_search",
    )

    num_active_paths_slider = gr.Slider(
        minimum=1,
        value=4,
        step=1,
        label="Number of active paths for modified_beam_search",
    )

    with gr.Tab("File Upload"):
        uploaded_file = gr.Audio(
            source="upload",  # Choose between "microphone", "upload"
            type="filepath",
            label="Upload audio file",
        )
        uploaded_output = gr.Textbox(label="Recognized speech from uploaded file")
        with gr.Row():
            upload_button = gr.Button("Recognize audio")
            upload_clear_button = gr.ClearButton(
                components=[uploaded_file, uploaded_output]
            )

    with gr.Tab("Real-time Microphone Recognition"):
        if streaming_recognizer is None:
            streaming_recognizer = get_pretrained_model(
                model_dropdown.value,
                decoding_method_radio.value,
                num_active_paths_slider.value,
            )
            print("Model initialized!")

        model_dropdown.change(
            fn=initialize_streaming_model,
            inputs=[
                model_dropdown,
                decoding_method_radio,
                num_active_paths_slider,
            ],
        )

        state = gr.State(value="")
        mic_input_audio = gr.Audio(
            source="microphone",
            type="filepath",
            label="Upload audio file",
        )
        mic_text_output = gr.Textbox(label="Recognized speech from microphone")
        mic_input_audio.stream(
            fn=recognize_audio_from_mic,
            inputs=[mic_input_audio, state],
            outputs=[mic_text_output, state],
            show_progress=False,
        )
        with gr.Row():
            file_clear_button = gr.ClearButton(
                components=[mic_text_output, state]
            ).click(streaming_recognizer.reset)

    upload_button.click(
        process_uploaded_file,
        inputs=[
            language_radio,
            model_dropdown,
            decoding_method_radio,
            num_active_paths_slider,
            uploaded_file,
        ],
        outputs=uploaded_output,
    )


demo.launch(debug=True)