Steven Limcorn
Added jxl 25 upscaler.
219dbcc
raw
history blame
2.85 kB
import numpy as np
import cv2
import onnxruntime
import gradio as gr
def pre_process(img: np.array) -> np.array:
# H, W, C -> C, H, W
img = np.transpose(img[:, :, 0:3], (2, 0, 1))
# C, H, W -> 1, C, H, W
img = np.expand_dims(img, axis=0).astype(np.float32)
return img
def post_process(img: np.array) -> np.array:
# 1, C, H, W -> C, H, W
img = np.squeeze(img)
# C, H, W -> H, W, C
img = np.transpose(img, (1, 2, 0))[:, :, ::-1].astype(np.uint8)
return img
def inference(model_path: str, img_array: np.array) -> np.array:
options = onnxruntime.SessionOptions()
options.intra_op_num_threads = 1
options.inter_op_num_threads = 1
ort_session = onnxruntime.InferenceSession(model_path, options)
ort_inputs = {ort_session.get_inputs()[0].name: img_array}
ort_outs = ort_session.run(None, ort_inputs)
return ort_outs[0]
def convert_pil_to_cv2(image):
# pil_image = image.convert("RGB")
open_cv_image = np.array(image)
# RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
return open_cv_image
def upscale(image, model):
model_path = f"models/{model}.ort"
img = convert_pil_to_cv2(image)
if img.ndim == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if img.shape[2] == 4:
alpha = img[:, :, 3] # GRAY
alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2BGR) # BGR
alpha_output = post_process(inference(model_path, pre_process(alpha))) # BGR
alpha_output = cv2.cvtColor(alpha_output, cv2.COLOR_BGR2GRAY) # GRAY
img = img[:, :, 0:3] # BGR
image_output = post_process(inference(model_path, pre_process(img))) # BGR
image_output = cv2.cvtColor(image_output, cv2.COLOR_BGR2BGRA) # BGRA
image_output[:, :, 3] = alpha_output
elif img.shape[2] == 3:
image_output = post_process(inference(model_path, pre_process(img))) # BGR
return image_output
examples = [[f"examples/example_{i+1}.png", "modelx4"] for i in range(5)]
examples += [[f"examples_x2/example_{i+1}.png", "modelx2"] for i in range(5)]
examples += [[f"examples_x2_25/example-{i+1}.png", ""] for i in range(5)]
examples += [
[f"minecraft_examples/minecraft-{i+1}.png", "minecraft_modelx4"] for i in range(5)
]
css = ".output-image, .input-image, .image-preview {height: 480px !important} "
model_choices = ["modelx2", "modelx2 25 JXL", "modelx4", "minecraft_modelx4"]
gr.Interface(
fn=upscale,
inputs=[
gr.inputs.Image(type="pil"),
gr.inputs.Radio(
model_choices,
type="value",
default=None,
label="Choose a Model",
optional=False,
),
],
outputs="image",
examples=examples,
examples_per_page=5,
title="Image Upscaling 🦆",
allow_flagging="never",
css=css,
).launch()