Spaces:
Running
Running
| import streamlit as st | |
| from urllib.request import urlopen, Request | |
| from bs4 import BeautifulSoup | |
| import pandas as pd | |
| import plotly | |
| import plotly.express as px | |
| import json # for graph plotting in website | |
| # NLTK VADER for sentiment analysis | |
| import nltk | |
| nltk.downloader.download('vader_lexicon') | |
| from nltk.sentiment.vader import SentimentIntensityAnalyzer | |
| import subprocess | |
| import os | |
| import datetime | |
| st.set_page_config(page_title = "Bohmian's Stock News Sentiment Analyzer", layout = "wide") | |
| def get_news(ticker): | |
| url = finviz_url + ticker | |
| req = Request(url=url,headers={'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:20.0) Gecko/20100101 Firefox/20.0'}) | |
| response = urlopen(req) | |
| # Read the contents of the file into 'html' | |
| html = BeautifulSoup(response) | |
| # Find 'news-table' in the Soup and load it into 'news_table' | |
| news_table = html.find(id='news-table') | |
| return news_table | |
| # parse news into dataframe | |
| def parse_news(news_table): | |
| parsed_news = [] | |
| today_string = datetime.datetime.today().strftime('%Y-%m-%d') | |
| for x in news_table.findAll('tr'): | |
| try: | |
| # read the text from each tr tag into text | |
| # get text from a only | |
| text = x.a.get_text() | |
| # splite text in the td tag into a list | |
| date_scrape = x.td.text.split() | |
| # if the length of 'date_scrape' is 1, load 'time' as the only element | |
| if len(date_scrape) == 1: | |
| time = date_scrape[0] | |
| # else load 'date' as the 1st element and 'time' as the second | |
| else: | |
| date = date_scrape[0] | |
| time = date_scrape[1] | |
| # Append ticker, date, time and headline as a list to the 'parsed_news' list | |
| parsed_news.append([date, time, text]) | |
| except: | |
| pass | |
| # Set column names | |
| columns = ['date', 'time', 'headline'] | |
| # Convert the parsed_news list into a DataFrame called 'parsed_and_scored_news' | |
| parsed_news_df = pd.DataFrame(parsed_news, columns=columns) | |
| # Create a pandas datetime object from the strings in 'date' and 'time' column | |
| parsed_news_df['date'] = parsed_news_df['date'].replace("Today", today_string) | |
| parsed_news_df['datetime'] = pd.to_datetime(parsed_news_df['date'] + ' ' + parsed_news_df['time']) | |
| return parsed_news_df | |
| def score_news(parsed_news_df): | |
| # Instantiate the sentiment intensity analyzer | |
| vader = SentimentIntensityAnalyzer() | |
| # Iterate through the headlines and get the polarity scores using vader | |
| scores = parsed_news_df['headline'].apply(vader.polarity_scores).tolist() | |
| # Convert the 'scores' list of dicts into a DataFrame | |
| scores_df = pd.DataFrame(scores) | |
| # Join the DataFrames of the news and the list of dicts | |
| parsed_and_scored_news = parsed_news_df.join(scores_df, rsuffix='_right') | |
| parsed_and_scored_news = parsed_and_scored_news.set_index('datetime') | |
| parsed_and_scored_news = parsed_and_scored_news.drop(['date', 'time'], 1) | |
| parsed_and_scored_news = parsed_and_scored_news.rename(columns={"compound": "sentiment_score"}) | |
| return parsed_and_scored_news | |
| def plot_hourly_sentiment(parsed_and_scored_news, ticker): | |
| # Group by date and ticker columns from scored_news and calculate the mean | |
| mean_scores = parsed_and_scored_news.resample('H').mean() | |
| # Plot a bar chart with plotly | |
| fig = px.bar(mean_scores, x=mean_scores.index, y='sentiment_score', title = ticker + ' Hourly Sentiment Scores') | |
| return fig # instead of using fig.show(), we return fig and turn it into a graphjson object for displaying in web page later | |
| def plot_daily_sentiment(parsed_and_scored_news, ticker): | |
| # Group by date and ticker columns from scored_news and calculate the mean | |
| mean_scores = parsed_and_scored_news.resample('D').mean() | |
| # Plot a bar chart with plotly | |
| fig = px.bar(mean_scores, x=mean_scores.index, y='sentiment_score', title = ticker + ' Daily Sentiment Scores') | |
| return fig # instead of using fig.show(), we return fig and turn it into a graphjson object for displaying in web page later | |
| # for extracting data from finviz | |
| finviz_url = 'https://finviz.com/quote.ashx?t=' | |
| st.header("Bohmian's Stock News Sentiment Analyzer") | |
| ticker = st.text_input('Enter Stock Ticker', '').upper() | |
| df = pd.DataFrame({'datetime': datetime.datetime.now(), 'ticker': ticker}, index = [0]) | |
| try: | |
| st.subheader("Hourly and Daily Sentiment of {} Stock".format(ticker)) | |
| news_table = get_news(ticker) | |
| parsed_news_df = parse_news(news_table) | |
| print(parsed_news_df) | |
| parsed_and_scored_news = score_news(parsed_news_df) | |
| fig_hourly = plot_hourly_sentiment(parsed_and_scored_news, ticker) | |
| fig_daily = plot_daily_sentiment(parsed_and_scored_news, ticker) | |
| st.plotly_chart(fig_hourly) | |
| st.plotly_chart(fig_daily) | |
| description = """ | |
| The above chart averages the sentiment scores of {} stock hourly and daily. | |
| The table below gives each of the most recent headlines of the stock and the negative, neutral, positive and an aggregated sentiment score. | |
| The news headlines are obtained from the FinViz website. | |
| Sentiments are given by the nltk.sentiment.vader Python library. | |
| """.format(ticker) | |
| st.write(description) | |
| st.table(parsed_and_scored_news) | |
| except Exception as e: | |
| print(str(e)) | |
| st.write("Enter a correct stock ticker, e.g. 'AAPL' above and hit Enter.") | |
| hide_streamlit_style = """ | |
| <style> | |
| #MainMenu {visibility: hidden;} | |
| footer {visibility: hidden;} | |
| </style> | |
| """ | |
| st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |