Spaces:
Running
Running
Commit
·
a356f8e
1
Parent(s):
2c9c9de
merge interfaces
Browse files- app.py +1 -1
- requirements.txt +1 -0
- run_demo.py +77 -0
app.py
CHANGED
@@ -1 +1 @@
|
|
1 |
-
|
|
|
1 |
+
run_demo.py
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
transformers
|
2 |
torch
|
|
|
3 |
pyctcdecode
|
4 |
pypi-kenlm
|
|
|
1 |
transformers
|
2 |
torch
|
3 |
+
torchaudio
|
4 |
pyctcdecode
|
5 |
pypi-kenlm
|
run_demo.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import torchaudio
|
6 |
+
from transformers import pipeline
|
7 |
+
from transformers.utils.logging import disable_progress_bar
|
8 |
+
|
9 |
+
SAMPLE_RATE = 16_000
|
10 |
+
|
11 |
+
warnings.filterwarnings("ignore")
|
12 |
+
|
13 |
+
disable_progress_bar()
|
14 |
+
|
15 |
+
logging.basicConfig(
|
16 |
+
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s",
|
17 |
+
datefmt="%Y-%m-%dT%H:%M:%SZ",
|
18 |
+
)
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
logger.setLevel(logging.DEBUG)
|
21 |
+
|
22 |
+
pipe = pipeline(model="bhuang/asr-wav2vec2-french")
|
23 |
+
logger.info("ASR pipeline has been initialized")
|
24 |
+
|
25 |
+
|
26 |
+
def process_audio_file(audio_file):
|
27 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
28 |
+
waveform = waveform.squeeze(axis=0) # mono
|
29 |
+
|
30 |
+
# resample
|
31 |
+
if sample_rate != SAMPLE_RATE:
|
32 |
+
resampler = torchaudio.transforms.Resample(sample_rate, SAMPLE_RATE)
|
33 |
+
waveform = resampler(waveform)
|
34 |
+
|
35 |
+
return waveform
|
36 |
+
|
37 |
+
|
38 |
+
def transcribe(microphone_audio_file, uploaded_audio_file):
|
39 |
+
warning_message = ""
|
40 |
+
if (microphone_audio_file is not None) and (uploaded_audio_file is not None):
|
41 |
+
warning_message = (
|
42 |
+
"WARNING: You've uploaded an audio file and used the microphone. "
|
43 |
+
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
44 |
+
)
|
45 |
+
audio_file = microphone_audio_file
|
46 |
+
elif (microphone_audio_file is None) and (uploaded_audio_file is None):
|
47 |
+
return "ERROR: You have to either use the microphone or upload an audio file"
|
48 |
+
elif microphone_audio_file is not None:
|
49 |
+
audio_file = microphone_audio_file
|
50 |
+
else:
|
51 |
+
audio_file = uploaded_audio_file
|
52 |
+
|
53 |
+
audio_data = process_audio_file(audio_file)
|
54 |
+
|
55 |
+
# text = pipe(audio, chunk_length_s=30, stride_length_s=5)["text"]
|
56 |
+
text = pipe(audio_data)["text"]
|
57 |
+
logger.info(f"Transcription for {audio_file}: {text}")
|
58 |
+
|
59 |
+
return warning_message + text
|
60 |
+
|
61 |
+
|
62 |
+
iface = gr.Interface(
|
63 |
+
fn=transcribe,
|
64 |
+
inputs=[
|
65 |
+
gr.Audio(source="microphone", type="filepath", label="Record something...", optional=True),
|
66 |
+
gr.Audio(source="upload", type="filepath", label="Upload some audio file...", optional=True),
|
67 |
+
],
|
68 |
+
outputs="text",
|
69 |
+
layout="horizontal",
|
70 |
+
# theme="huggingface",
|
71 |
+
title="Speech-to-Text in French",
|
72 |
+
description="Realtime demo for French automatic speech recognition.",
|
73 |
+
allow_flagging="never",
|
74 |
+
)
|
75 |
+
|
76 |
+
# iface.launch(server_name="0.0.0.0", debug=True, share=True)
|
77 |
+
iface.launch(enable_queue=True)
|