Spaces:
Sleeping
Sleeping
AK-HI
Browse files- AK-HI-preprocess.py +272 -0
- pad-AK-HI-stats.parquet +3 -0
- preprocess.py +2 -3
AK-HI-preprocess.py
ADDED
|
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# +
|
| 2 |
+
import ibis
|
| 3 |
+
import ibis.selectors as s
|
| 4 |
+
from ibis import _
|
| 5 |
+
import fiona
|
| 6 |
+
import geopandas as gpd
|
| 7 |
+
import rioxarray
|
| 8 |
+
from shapely.geometry import box
|
| 9 |
+
|
| 10 |
+
vec_file = 'pad-AK-HI-stats.parquet'
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# +
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
fgb = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.fgb"
|
| 18 |
+
parquet = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.parquet"
|
| 19 |
+
# gdb = "https://data.source.coop/cboettig/pad-us-3/PADUS3/PAD_US3_0.gdb" # original, all tables
|
| 20 |
+
|
| 21 |
+
con = ibis.duckdb.connect()
|
| 22 |
+
con.load_extension("spatial")
|
| 23 |
+
threads = 1
|
| 24 |
+
|
| 25 |
+
# or read the fgb version, much slower
|
| 26 |
+
# pad = con.read_geo(fgb)
|
| 27 |
+
# pad = con.read_parquet(parquet)
|
| 28 |
+
# Currently ibis doesn't detect that this is GeoParquet. We need a SQL escape-hatch to cast the geometry
|
| 29 |
+
|
| 30 |
+
agency_name = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-agency-name.parquet").select(manager_name_id = "Code", manager_name = "Dom")
|
| 31 |
+
agency_type = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-agency-type.parquet").select(manager_type_id = "Code", manager_type = "Dom")
|
| 32 |
+
desig_type = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-desgination-type.parquet").select(designation_type_id = "Code", designation_type = "Dom")
|
| 33 |
+
public_access = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-public-access.parquet").select(public_access_id = "Code", public_access = "Dom")
|
| 34 |
+
state_name = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-state-name.parquet").select(state = "Code", state_name = "Dom")
|
| 35 |
+
iucn = con.read_parquet("https://huggingface.co/datasets/boettiger-lab/pad-us-3/resolve/main/parquet/pad-iucn.parquet").select(iucn_code = "CODE", iucn_category = "DOM")
|
| 36 |
+
|
| 37 |
+
con.raw_sql(f"CREATE OR REPLACE VIEW pad AS SELECT *, st_geomfromwkb(geometry) as geom from read_parquet('{parquet}')")
|
| 38 |
+
pad = con.table("pad")
|
| 39 |
+
# -
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# Get the CRS
|
| 43 |
+
# fiona is not built with parquet support, must read this from fgb. ideally duckdb's st_read_meta would do this from the parquet
|
| 44 |
+
meta = fiona.open(fgb)
|
| 45 |
+
crs = meta.crs
|
| 46 |
+
|
| 47 |
+
# Now we can do all the usual SQL queries to subset the data. Note the `geom.within()` spatial filter!
|
| 48 |
+
focal_columns = ["row_n", "FeatClass", "Mang_Name",
|
| 49 |
+
"Mang_Type", "Des_Tp", "Pub_Access",
|
| 50 |
+
"GAP_Sts", "IUCN_Cat", "Unit_Nm",
|
| 51 |
+
"State_Nm", "EsmtHldr", "Date_Est",
|
| 52 |
+
"SHAPE_Area", "geom"]
|
| 53 |
+
(
|
| 54 |
+
pad
|
| 55 |
+
.mutate(row_n=ibis.row_number())
|
| 56 |
+
.filter(_.FeatClass.isin(["Easement", "Fee"]))
|
| 57 |
+
.filter(_.State_Nm.isin(["AK", "HI"]))
|
| 58 |
+
.select(focal_columns)
|
| 59 |
+
.rename(geometry="geom")
|
| 60 |
+
.rename(manager_name_id = "Mang_Name",
|
| 61 |
+
manager_type_id = "Mang_Type",
|
| 62 |
+
designation_type_id = "Des_Tp",
|
| 63 |
+
public_access_id = "Pub_Access",
|
| 64 |
+
category = "FeatClass",
|
| 65 |
+
iucn_code = "IUCN_Cat",
|
| 66 |
+
gap_code = "GAP_Sts",
|
| 67 |
+
state = "State_Nm",
|
| 68 |
+
easement_holder = "EsmtHldr",
|
| 69 |
+
date_established = "Date_Est",
|
| 70 |
+
area_square_meters = "SHAPE_Area",
|
| 71 |
+
area_name = "Unit_Nm")
|
| 72 |
+
.left_join(agency_name, "manager_name_id")
|
| 73 |
+
.left_join(agency_type, "manager_type_id")
|
| 74 |
+
.left_join(desig_type, "designation_type_id")
|
| 75 |
+
.left_join(public_access, "public_access_id")
|
| 76 |
+
.left_join(state_name, "state")
|
| 77 |
+
.left_join(iucn, "iucn_code")
|
| 78 |
+
.select(~s.contains("_right"))
|
| 79 |
+
# .select(~s.contains("_id"))
|
| 80 |
+
# if we keep the original geoparquet WKB 'geometry' column, to_pandas() (or execute) gives us only a normal pandas data.frame, and geopandas doesn't see the metadata.
|
| 81 |
+
# if we replace the geometry with duckdb-native 'geometry' type, to_pandas() gives us a geopanadas! But requires reading into RAM.
|
| 82 |
+
.to_pandas()
|
| 83 |
+
.set_crs(crs)
|
| 84 |
+
.to_parquet(vec_file)
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# +
|
| 88 |
+
import rasterio
|
| 89 |
+
from rasterstats import zonal_stats
|
| 90 |
+
import geopandas as gpd
|
| 91 |
+
import pandas as pd
|
| 92 |
+
from joblib import Parallel, delayed
|
| 93 |
+
|
| 94 |
+
def big_zonal_stats(vec_file, tif_file, stats, col_name, n_jobs, verbose = 10, timeout=10000):
|
| 95 |
+
|
| 96 |
+
# read in vector as geopandas, match CRS to raster
|
| 97 |
+
with rasterio.open(tif_file) as src:
|
| 98 |
+
raster_profile = src.profile
|
| 99 |
+
gdf = gpd.read_parquet(vec_file).to_crs(raster_profile['crs'])
|
| 100 |
+
|
| 101 |
+
# row_n is a global id, may refer to excluded polygons
|
| 102 |
+
# gdf["row_id"] = gdf.index + 1
|
| 103 |
+
|
| 104 |
+
# lamba fn to zonal_stats a slice:
|
| 105 |
+
def get_stats(geom_slice, tif_file, stats):
|
| 106 |
+
stats = zonal_stats(geom_slice.geometry, tif_file, stats = stats)
|
| 107 |
+
stats[0]['row_n'] = geom_slice.row_n
|
| 108 |
+
# print(geom_slice.row_n)
|
| 109 |
+
return stats[0]
|
| 110 |
+
|
| 111 |
+
# iteratation (could be a list comprehension?)
|
| 112 |
+
jobs = []
|
| 113 |
+
for r in gdf.itertuples():
|
| 114 |
+
jobs.append(delayed(get_stats)(r, tif_file, stats))
|
| 115 |
+
|
| 116 |
+
# And here we go
|
| 117 |
+
output = Parallel(n_jobs=n_jobs, timeout=timeout, verbose=verbose)(jobs)
|
| 118 |
+
|
| 119 |
+
# reshape output
|
| 120 |
+
df = (
|
| 121 |
+
pd.DataFrame(output)
|
| 122 |
+
.rename(columns={'mean': col_name})
|
| 123 |
+
.merge(gdf, how='right', on = 'row_n')
|
| 124 |
+
)
|
| 125 |
+
gdf = gpd.GeoDataFrame(df, geometry="geometry")
|
| 126 |
+
return gdf
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# -
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
tif_file = "/home/rstudio/boettiger-lab/us-pa-policy/hfp_2021_100m_v1-2_cog.tif"
|
| 133 |
+
threads=1
|
| 134 |
+
|
| 135 |
+
# +
|
| 136 |
+
#import geopandas as gpd
|
| 137 |
+
#test = gpd.read_parquet("pad-processed.parquet")
|
| 138 |
+
#test.columns
|
| 139 |
+
|
| 140 |
+
# +
|
| 141 |
+
# %%time
|
| 142 |
+
#
|
| 143 |
+
tif_file = "/home/rstudio/boettiger-lab/us-pa-policy/hfp_2021_100m_v1-2_cog.tif"
|
| 144 |
+
|
| 145 |
+
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
|
| 146 |
+
col_name = "human_impact", n_jobs=1, verbose=0)
|
| 147 |
+
gpd.GeoDataFrame(df, geometry="geometry").to_parquet(vec_file)
|
| 148 |
+
# -
|
| 149 |
+
|
| 150 |
+
# %%time
|
| 151 |
+
tif_file = '/home/rstudio/source.coop/cboettig/mobi/species-richness-all/SpeciesRichness_All.tif'
|
| 152 |
+
big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "richness", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
# +
|
| 156 |
+
# %%time
|
| 157 |
+
|
| 158 |
+
tif_file = '/home/rstudio/source.coop/cboettig/mobi/range-size-rarity-all/RSR_All.tif'
|
| 159 |
+
|
| 160 |
+
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
|
| 161 |
+
col_name = "rsr", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
| 162 |
+
|
| 163 |
+
# +
|
| 164 |
+
# %%time
|
| 165 |
+
|
| 166 |
+
tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/deforest_carbon_100m_cog.tif'
|
| 167 |
+
|
| 168 |
+
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
|
| 169 |
+
col_name = "deforest_carbon", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
| 170 |
+
|
| 171 |
+
# +
|
| 172 |
+
# %%time
|
| 173 |
+
|
| 174 |
+
tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/natcrop_bii_100m_cog.tif'
|
| 175 |
+
|
| 176 |
+
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
|
| 177 |
+
col_name = "biodiversity_intactness_loss", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
| 178 |
+
|
| 179 |
+
# +
|
| 180 |
+
# %%time
|
| 181 |
+
|
| 182 |
+
tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/natcrop_fii_100m_cog.tif'
|
| 183 |
+
|
| 184 |
+
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'],
|
| 185 |
+
col_name = "forest_integrity_loss", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
| 186 |
+
|
| 187 |
+
# +
|
| 188 |
+
# %%time
|
| 189 |
+
|
| 190 |
+
tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/natcrop_expansion_100m_cog.tif'
|
| 191 |
+
|
| 192 |
+
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "crop_expansion", n_jobs=threads, verbose=0)
|
| 193 |
+
gpd.GeoDataFrame(df, geometry="geometry").to_parquet(vec_file)
|
| 194 |
+
|
| 195 |
+
# +
|
| 196 |
+
# %%time
|
| 197 |
+
tif_file = '/home/rstudio/source.coop/vizzuality/lg-land-carbon-data/natcrop_reduction_100m_cog.tif'
|
| 198 |
+
|
| 199 |
+
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "crop_reduction", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
| 200 |
+
|
| 201 |
+
# +
|
| 202 |
+
# %%time
|
| 203 |
+
tif_file = '/home/rstudio/source.coop/cboettig/carbon/cogs/irrecoverable_c_total_2018.tif'
|
| 204 |
+
|
| 205 |
+
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "irrecoverable_carbon", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
| 206 |
+
|
| 207 |
+
# +
|
| 208 |
+
# %%time
|
| 209 |
+
tif_file = '/home/rstudio/source.coop/cboettig/carbon/cogs/manageable_c_total_2018.tif'
|
| 210 |
+
|
| 211 |
+
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "manageable_carbon", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
| 212 |
+
|
| 213 |
+
# +
|
| 214 |
+
# %%time
|
| 215 |
+
tif_file = '/home/rstudio/minio/shared-biodiversity/redlist/cog/combined_rwr_2022.tif'
|
| 216 |
+
|
| 217 |
+
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "all_species_rwr", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
| 218 |
+
|
| 219 |
+
# +
|
| 220 |
+
# %%time
|
| 221 |
+
tif_file = '/home/rstudio/minio/shared-biodiversity/redlist/cog/combined_sr_2022.tif'
|
| 222 |
+
|
| 223 |
+
df = big_zonal_stats(vec_file, tif_file, stats = ['mean'], col_name = "all_species_richness", n_jobs=threads, verbose=0).to_parquet(vec_file)
|
| 224 |
+
|
| 225 |
+
# +
|
| 226 |
+
columns = '''
|
| 227 |
+
area_name,
|
| 228 |
+
manager_name,
|
| 229 |
+
manager_name_id,
|
| 230 |
+
manager_type,
|
| 231 |
+
manager_type_id,
|
| 232 |
+
manager_group,
|
| 233 |
+
designation_type,
|
| 234 |
+
designation_type_id,
|
| 235 |
+
public_access,
|
| 236 |
+
category,
|
| 237 |
+
iucn_code,
|
| 238 |
+
iucn_category,
|
| 239 |
+
gap_code,
|
| 240 |
+
state,
|
| 241 |
+
state_name,
|
| 242 |
+
easement_holder,
|
| 243 |
+
date_established,
|
| 244 |
+
area_square_meters,
|
| 245 |
+
geometry,
|
| 246 |
+
all_species_richness,
|
| 247 |
+
all_species_rwr,
|
| 248 |
+
manageable_carbon,
|
| 249 |
+
irrecoverable_carbon,
|
| 250 |
+
crop_reduction,
|
| 251 |
+
crop_expansion,
|
| 252 |
+
deforest_carbon,
|
| 253 |
+
richness,
|
| 254 |
+
rsr,
|
| 255 |
+
forest_integrity_loss,
|
| 256 |
+
biodiversity_intactness_loss
|
| 257 |
+
'''
|
| 258 |
+
|
| 259 |
+
items = columns.split(',')
|
| 260 |
+
# Remove empty strings and whitespace
|
| 261 |
+
items = [item.strip() for item in items if item.strip()]
|
| 262 |
+
items
|
| 263 |
+
# -
|
| 264 |
+
|
| 265 |
+
import ibis
|
| 266 |
+
from ibis import _
|
| 267 |
+
df = ibis.read_parquet(vec_file).select(items).to_parquet(vec_file)
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
import ibis
|
| 271 |
+
from ibis import _
|
| 272 |
+
ibis.read_parquet("pad-AK-HI-stats.parquet")
|
pad-AK-HI-stats.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1019bf85ac264c5ebe437ebfea942809bf9df6394837c54f315bc94b487c566
|
| 3 |
+
size 151708809
|
preprocess.py
CHANGED
|
@@ -14,7 +14,7 @@ parquet = "https://data.source.coop/cboettig/pad-us-3/pad-us3-combined.parquet"
|
|
| 14 |
|
| 15 |
con = ibis.duckdb.connect()
|
| 16 |
con.load_extension("spatial")
|
| 17 |
-
threads =
|
| 18 |
|
| 19 |
# or read the fgb version, much slower
|
| 20 |
# pad = con.read_geo(fgb)
|
|
@@ -283,7 +283,6 @@ manager_name,
|
|
| 283 |
manager_name_id,
|
| 284 |
manager_type,
|
| 285 |
manager_type_id,
|
| 286 |
-
manager_group,
|
| 287 |
designation_type,
|
| 288 |
designation_type_id,
|
| 289 |
public_access,
|
|
@@ -319,7 +318,7 @@ items
|
|
| 319 |
import ibis
|
| 320 |
from ibis import _
|
| 321 |
df = ibis.read_parquet("pad-stats.parquet").select(items)
|
| 322 |
-
df.group_by(_.
|
| 323 |
|
| 324 |
# +
|
| 325 |
## create pad.duckdb
|
|
|
|
| 14 |
|
| 15 |
con = ibis.duckdb.connect()
|
| 16 |
con.load_extension("spatial")
|
| 17 |
+
threads = -1
|
| 18 |
|
| 19 |
# or read the fgb version, much slower
|
| 20 |
# pad = con.read_geo(fgb)
|
|
|
|
| 283 |
manager_name_id,
|
| 284 |
manager_type,
|
| 285 |
manager_type_id,
|
|
|
|
| 286 |
designation_type,
|
| 287 |
designation_type_id,
|
| 288 |
public_access,
|
|
|
|
| 318 |
import ibis
|
| 319 |
from ibis import _
|
| 320 |
df = ibis.read_parquet("pad-stats.parquet").select(items)
|
| 321 |
+
df.group_by(_.manager_type).aggregate(n = _.manager_type.count()).to_pandas()
|
| 322 |
|
| 323 |
# +
|
| 324 |
## create pad.duckdb
|