Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Optional, Tuple | |
| from loguru import logger | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| from transformers.cache_utils import Cache, StaticCache | |
| from transformers.modeling_flash_attention_utils import _flash_attention_forward | |
| from transformers.utils import is_flash_attn_greater_or_equal_2_10 | |
| from transformers import ROPE_INIT_FUNCTIONS | |
| from transformers.models.llama.configuration_llama import LlamaConfig | |
| from models.heads import LlamaMLP | |
| from utils.model_utils import apply_rotary_pos_emb, repeat_kv | |
| from models.config import NextStepConfig | |
| class LlamaRMSNorm(nn.Module): | |
| """LlamaRMSNorm is equivalent to T5LayerNorm""" | |
| def __init__(self, hidden_size, eps=1e-6): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(hidden_size)) | |
| self.variance_epsilon = eps | |
| def forward(self, hidden_states): | |
| input_dtype = hidden_states.dtype | |
| hidden_states = hidden_states.to(torch.float32) | |
| variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
| hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
| return self.weight * hidden_states.to(input_dtype) | |
| def extra_repr(self): | |
| return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | |
| class LlamaRotaryEmbedding(nn.Module): | |
| def __init__(self, device=None, config: Optional[LlamaConfig] = None): | |
| super().__init__() | |
| self.rope_type = "default" | |
| self.config = config | |
| self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] | |
| inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) | |
| self.register_buffer("inv_freq", inv_freq, persistent=False) | |
| def forward(self, x, position_ids): | |
| # Core RoPE block | |
| inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | |
| position_ids_expanded = position_ids[:, None, :].float() | |
| # Force float32 (see https://github.com/huggingface/transformers/pull/29285) | |
| device_type = x.device.type | |
| device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | |
| with torch.autocast(device_type=device_type, enabled=False): | |
| freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| cos = emb.cos() | |
| sin = emb.sin() | |
| # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention | |
| cos = cos * self.attention_scaling | |
| sin = sin * self.attention_scaling | |
| return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | |
| class LlamaAttention(nn.Module): | |
| def __init__(self, config: NextStepConfig, layer_idx: Optional[int]): | |
| super().__init__() | |
| self.config = config | |
| self.layer_idx = layer_idx | |
| self.attention_dropout = config.attention_dropout | |
| self.hidden_size = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads) | |
| self.num_key_value_heads = config.num_key_value_heads | |
| self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
| self.max_position_embeddings = config.max_position_embeddings | |
| self.rope_theta = config.rope_theta | |
| self.is_causal = True | |
| self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) | |
| self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) | |
| self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) | |
| self.o_proj = nn.Linear( | |
| self.num_heads * self.head_dim, self.hidden_size, bias=getattr(config, "o_attention_bias", config.attention_bias) | |
| ) | |
| self._flash_attn_uses_top_left_mask = False | |
| def forward_sdpa( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| if position_embeddings is None: | |
| logger.warning_once( | |
| "The attention layers in this model are transitioning from computing the RoPE embeddings internally " | |
| "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed " | |
| "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be " | |
| "removed and `position_embeddings` will be mandatory." | |
| ) | |
| cos, sin = self.rotary_emb(value_states, position_ids) | |
| else: | |
| cos, sin = position_embeddings | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| if past_key_value is not None: | |
| # sin and cos are specific to RoPE models; cache_position needed for the static cache | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| causal_mask = attention_mask | |
| if attention_mask is not None: | |
| causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] | |
| # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
| # Reference: https://github.com/pytorch/pytorch/issues/112577. | |
| if query_states.device.type == "cuda" and causal_mask is not None: | |
| query_states = query_states.contiguous() | |
| key_states = key_states.contiguous() | |
| value_states = value_states.contiguous() | |
| # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
| # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
| is_causal = True if causal_mask is None and q_len > 1 else False | |
| attn_output = torch.nn.functional.scaled_dot_product_attention( | |
| query_states, | |
| key_states, | |
| value_states, | |
| attn_mask=causal_mask, | |
| dropout_p=self.attention_dropout if self.training else 0.0, | |
| is_causal=is_causal, | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.view(bsz, q_len, -1) | |
| attn_output = self.o_proj(attn_output) | |
| return attn_output, None, past_key_value | |
| def forward_flash( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| if isinstance(past_key_value, StaticCache): | |
| raise ValueError( | |
| "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` " | |
| "make sure to use `sdpa` in the mean time, and open an issue at GitHub - huggingface/transformers: 🤗 Transformers: the model-definition framework for state-of-the-a" | |
| ) | |
| output_attentions = False | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| # Flash attention requires the input to have the shape | |
| # batch_size x seq_length x head_dim x hidden_dim | |
| # therefore we just need to keep the original shape | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| if position_embeddings is None: | |
| logger.warning_once( | |
| "The attention layers in this model are transitioning from computing the RoPE embeddings internally " | |
| "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed " | |
| "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be " | |
| "removed and `position_embeddings` will be mandatory." | |
| ) | |
| cos, sin = self.rotary_emb(value_states, position_ids) | |
| else: | |
| cos, sin = position_embeddings | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| if past_key_value is not None: | |
| # sin and cos are specific to RoPE models; cache_position needed for the static cache | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache | |
| # to be able to avoid many of these transpose/reshape/view. | |
| query_states = query_states.transpose(1, 2) | |
| key_states = key_states.transpose(1, 2) | |
| value_states = value_states.transpose(1, 2) | |
| dropout_rate = self.attention_dropout if self.training else 0.0 | |
| input_dtype = query_states.dtype | |
| if input_dtype == torch.float32: | |
| if torch.is_autocast_enabled(): | |
| target_dtype = torch.get_autocast_gpu_dtype() | |
| # Handle the case where the model is quantized | |
| elif hasattr(self.config, "_pre_quantization_dtype"): | |
| target_dtype = self.config._pre_quantization_dtype | |
| else: | |
| target_dtype = self.q_proj.weight.dtype | |
| logger.warning_once( | |
| f"The input hidden states seems to be silently casted in float32, this might be related to" | |
| f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
| f" {target_dtype}." | |
| ) | |
| query_states = query_states.to(target_dtype) | |
| key_states = key_states.to(target_dtype) | |
| value_states = value_states.to(target_dtype) | |
| attn_output = _flash_attention_forward( | |
| query_states, | |
| key_states, | |
| value_states, | |
| attention_mask, | |
| q_len, | |
| position_ids=position_ids, | |
| dropout=dropout_rate, | |
| sliding_window=getattr(self, "sliding_window", None), | |
| use_top_left_mask=self._flash_attn_uses_top_left_mask, | |
| is_causal=self.is_causal, | |
| ) | |
| attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() | |
| attn_output = self.o_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, past_key_value | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| if position_embeddings is None: | |
| logger.warning_once( | |
| "The attention layers in this model are transitioning from computing the RoPE embeddings internally " | |
| "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed " | |
| "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be " | |
| "removed and `position_embeddings` will be mandatory." | |
| ) | |
| cos, sin = self.rotary_emb(value_states, position_ids) | |
| else: | |
| cos, sin = position_embeddings | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| if past_key_value is not None: | |
| # sin and cos are specific to RoPE models; cache_position needed for the static cache | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
| if attention_mask is not None: # no matter the length, we just slice it | |
| causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
| attn_weights = attn_weights + causal_mask | |
| # upcast attention to fp32 | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
| attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | |
| attn_output = torch.matmul(attn_weights, value_states) | |
| if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
| raise ValueError( | |
| f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
| f" {attn_output.size()}" | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.reshape(bsz, q_len, -1) | |
| attn_output = self.o_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, past_key_value | |
| class LlamaFlashAttention2(LlamaAttention): | |
| """ | |
| Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays | |
| untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
| flash attention and deal with padding tokens in case the input contains any of them. | |
| """ | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| if isinstance(past_key_value, StaticCache): | |
| raise ValueError( | |
| "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` " | |
| "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers" | |
| ) | |
| output_attentions = False | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| # Flash attention requires the input to have the shape | |
| # batch_size x seq_length x head_dim x hidden_dim | |
| # therefore we just need to keep the original shape | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| cos, sin = position_embeddings | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| if past_key_value is not None: | |
| # sin and cos are specific to RoPE models; cache_position needed for the static cache | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache | |
| # to be able to avoid many of these transpose/reshape/view. | |
| query_states = query_states.transpose(1, 2) | |
| key_states = key_states.transpose(1, 2) | |
| value_states = value_states.transpose(1, 2) | |
| dropout_rate = self.attention_dropout if self.training else 0.0 | |
| input_dtype = query_states.dtype | |
| if input_dtype == torch.float32: | |
| if torch.is_autocast_enabled(): | |
| target_dtype = torch.get_autocast_gpu_dtype() | |
| # Handle the case where the model is quantized | |
| elif hasattr(self.config, "_pre_quantization_dtype"): | |
| target_dtype = self.config._pre_quantization_dtype | |
| else: | |
| target_dtype = self.q_proj.weight.dtype | |
| logger.warning_once( | |
| f"The input hidden states seems to be silently casted in float32, this might be related to" | |
| f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
| f" {target_dtype}." | |
| ) | |
| query_states = query_states.to(target_dtype) | |
| key_states = key_states.to(target_dtype) | |
| value_states = value_states.to(target_dtype) | |
| attn_output = _flash_attention_forward( | |
| query_states, | |
| key_states, | |
| value_states, | |
| attention_mask, | |
| q_len, | |
| position_ids=None, | |
| dropout=dropout_rate, | |
| sliding_window=getattr(self, "sliding_window", None), | |
| use_top_left_mask=self._flash_attn_uses_top_left_mask, | |
| is_causal=self.is_causal, | |
| ) | |
| attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() | |
| attn_output = self.o_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, past_key_value | |
| class LlamaSdpaAttention(LlamaAttention): | |
| """ | |
| Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | |
| `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | |
| SDPA API. | |
| """ | |
| # Adapted from LlamaAttention.forward | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| bsz, q_len, _ = hidden_states.size() | |
| query_states = self.q_proj(hidden_states) | |
| key_states = self.k_proj(hidden_states) | |
| value_states = self.v_proj(hidden_states) | |
| query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| cos, sin = position_embeddings | |
| query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) | |
| if past_key_value is not None: | |
| # sin and cos are specific to RoPE models; cache_position needed for the static cache | |
| cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
| key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
| key_states = repeat_kv(key_states, self.num_key_value_groups) | |
| value_states = repeat_kv(value_states, self.num_key_value_groups) | |
| causal_mask = attention_mask | |
| if attention_mask is not None: | |
| causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] | |
| # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
| # Reference: https://github.com/pytorch/pytorch/issues/112577. | |
| if query_states.device.type == "cuda" and causal_mask is not None: | |
| query_states = query_states.contiguous() | |
| key_states = key_states.contiguous() | |
| value_states = value_states.contiguous() | |
| # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
| # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
| is_causal = True if causal_mask is None and q_len > 1 else False | |
| attn_output = torch.nn.functional.scaled_dot_product_attention( | |
| query_states, | |
| key_states, | |
| value_states, | |
| attn_mask=causal_mask, | |
| dropout_p=self.attention_dropout if self.training else 0.0, | |
| is_causal=is_causal, | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.view(bsz, q_len, -1) | |
| attn_output = self.o_proj(attn_output) | |
| return attn_output, None, past_key_value | |
| LLAMA_ATTENTION_CLASSES = { | |
| "eager": LlamaAttention, | |
| "flash_attention_2": LlamaFlashAttention2, | |
| "sdpa": LlamaSdpaAttention, | |
| } | |
| class LlamaDecoderLayer(nn.Module): | |
| def __init__(self, config: LlamaConfig, layer_idx: int): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) | |
| self.mlp = LlamaMLP(config) | |
| self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: Optional[bool] = False, | |
| use_cache: Optional[bool] = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 | |
| **kwargs, | |
| ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
| residual = hidden_states | |
| hidden_states = self.input_layernorm(hidden_states) | |
| # Self Attention | |
| hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| position_embeddings=position_embeddings, | |
| **kwargs, | |
| ) | |
| hidden_states = residual + hidden_states | |
| # Fully Connected | |
| residual = hidden_states | |
| hidden_states = self.post_attention_layernorm(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = residual + hidden_states | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (self_attn_weights,) | |
| if use_cache: | |
| outputs += (present_key_value,) | |
| return outputs |