Spaces:
Running
on
Zero
Running
on
Zero
| import math | |
| import torch | |
| import torch.nn as nn | |
| from torch.utils.checkpoint import checkpoint | |
| from transformers.activations import ACT2FN | |
| from models.config import LlamaConfig | |
| from utils.misc import LargeInt | |
| from utils.model_utils import expand_t, randn_tensor | |
| from utils.compile_utils import smart_compile | |
| class LlamaMLP(nn.Module): | |
| def __init__(self, config: LlamaConfig): | |
| super().__init__() | |
| self.config = config | |
| self.hidden_size = config.hidden_size | |
| self.intermediate_size = config.intermediate_size | |
| self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) | |
| self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) | |
| self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) | |
| self.act_fn = ACT2FN[config.hidden_act] | |
| def forward(self, x): | |
| down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
| return down_proj | |
| def modulate(x, shift, scale=None): | |
| if shift is None: | |
| return x * (1 + scale) | |
| return x * (1 + scale) + shift | |
| class ResBlock(nn.Module): | |
| def __init__(self, channels, mlp_ratio=1.0): | |
| super().__init__() | |
| self.channels = channels | |
| self.intermediate_size = int(channels * mlp_ratio) | |
| self.in_ln = nn.LayerNorm(self.channels, eps=1e-6) | |
| self.mlp = nn.Sequential( | |
| nn.Linear(self.channels, self.intermediate_size), | |
| nn.SiLU(), | |
| nn.Linear(self.intermediate_size, self.channels), | |
| ) | |
| self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(channels, 3 * channels, bias=True)) | |
| def forward(self, x, y): | |
| shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(y).chunk(3, dim=-1) | |
| h = modulate(self.in_ln(x), shift_mlp, scale_mlp) | |
| h = self.mlp(h) | |
| return x + gate_mlp * h | |
| class FinalLayer(nn.Module): | |
| def __init__(self, model_channels, out_channels): | |
| super().__init__() | |
| self.norm_final = nn.LayerNorm(model_channels, elementwise_affine=False, eps=1e-6) | |
| self.linear = nn.Linear(model_channels, out_channels, bias=True) | |
| self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(model_channels, 2 * model_channels, bias=True)) | |
| def forward(self, x, c): | |
| shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) | |
| x = modulate(self.norm_final(x), shift, scale) | |
| x = self.linear(x) | |
| return x | |
| class TimestepEmbedder(nn.Module): | |
| """ | |
| Embeds scalar timesteps into vector representations. | |
| """ | |
| def __init__(self, hidden_size, frequency_embedding_size=256): | |
| super().__init__() | |
| self.mlp = nn.Sequential( | |
| nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
| nn.SiLU(), | |
| nn.Linear(hidden_size, hidden_size, bias=True), | |
| ) | |
| self.frequency_embedding_size = frequency_embedding_size | |
| def timestep_embedding(t: torch.Tensor, dim: int, max_period: float = 10000.0): | |
| """ | |
| Create sinusoidal timestep embeddings. | |
| :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. | |
| :param dim: the dimension of the output. | |
| :param max_period: controls the minimum frequency of the embeddings. | |
| :return: an (N, D) Tensor of positional embeddings. | |
| """ | |
| # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
| half = dim // 2 | |
| freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( | |
| device=t.device | |
| ) | |
| args = t[:, None].float() * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
| return embedding | |
| def forward(self, t): | |
| t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
| t_emb = self.mlp(t_freq.to(self.mlp[0].weight.dtype)) | |
| return t_emb | |
| class SimpleMLPAdaLN(nn.Module): | |
| def __init__(self, input_dim, cond_dim, dim=1536, layers=12, mlp_ratio=1.0): | |
| super().__init__() | |
| self.input_dim = input_dim | |
| self.cond_dim = cond_dim | |
| self.dim = dim | |
| self.layers = layers | |
| self.mlp_ratio = mlp_ratio | |
| self.time_embed = TimestepEmbedder(dim) | |
| self.cond_embed = nn.Linear(cond_dim, dim) | |
| self.input_proj = nn.Linear(input_dim, dim) | |
| res_blocks = [] | |
| for _ in range(layers): | |
| res_blocks.append(ResBlock(dim, mlp_ratio)) | |
| self.res_blocks = nn.ModuleList(res_blocks) | |
| self.final_layer = FinalLayer(dim, input_dim) | |
| self.grad_checkpointing = False | |
| def forward(self, x, t, c): | |
| """ | |
| x.shape = (bsz, input_dim) | |
| t.shape = (bsz,) | |
| c.shape = (bsz, cond_dim) | |
| """ | |
| x = self.input_proj(x) | |
| t = self.time_embed(t) | |
| c = self.cond_embed(c) | |
| y = t + c | |
| for block in self.res_blocks: | |
| if self.grad_checkpointing and self.training: | |
| x = checkpoint(block, x, y, use_reentrant=True) | |
| else: | |
| x = block(x, y) | |
| return self.final_layer(x, y) | |
| class FlowMatchingHead(nn.Module): | |
| def __init__(self, input_dim, cond_dim, dim=1536, layers=12, mlp_ratio=1.0): | |
| super(FlowMatchingHead, self).__init__() | |
| self.input_dim = input_dim | |
| self.net = SimpleMLPAdaLN(input_dim=input_dim, cond_dim=cond_dim, dim=dim, layers=layers, mlp_ratio=mlp_ratio) | |
| def dtype(self): | |
| return self.net.input_proj.weight.dtype | |
| def device(self): | |
| return self.net.input_proj.weight.device | |
| def trainable_params(self) -> float: | |
| n_params = sum(p.numel() for p in self.parameters() if p.requires_grad) | |
| return LargeInt(n_params) | |
| def get_score_from_velocity(self, velocity, x, t): | |
| """Wrapper function: transfrom velocity prediction model to score | |
| Args: | |
| velocity: [bsz, ...] shaped tensor; velocity model output | |
| x: [bsz, ...] shaped tensor; x_t data point | |
| t: [bsz,] time tensor | |
| """ | |
| t = expand_t(t, x) | |
| alpha_t, d_alpha_t = t, 1 | |
| sigma_t, d_sigma_t = 1 - t, -1 | |
| mean = x | |
| reverse_alpha_ratio = alpha_t / d_alpha_t | |
| var = sigma_t**2 - reverse_alpha_ratio * d_sigma_t * sigma_t | |
| score = (reverse_alpha_ratio * velocity - mean) / var | |
| return score | |
| def get_velocity_from_cfg(self, velocity, cfg, cfg_img, cfg_mult): | |
| if cfg_mult == 2: | |
| cond_v, uncond_v = torch.chunk(velocity, 2, dim=0) | |
| velocity = uncond_v + cfg * (cond_v - uncond_v) | |
| elif cfg_mult == 3: | |
| cond_v, uncond_v1, uncond_v2 = torch.chunk(velocity, 3, dim=0) | |
| velocity = uncond_v2 + cfg_img * (uncond_v1 - uncond_v2) + cfg * (cond_v - uncond_v1) | |
| return velocity | |
| def sample( | |
| self, | |
| c: torch.Tensor, | |
| cfg: float = 1.0, | |
| cfg_img: float = 1.0, | |
| timesteps_shift: float = 1.0, | |
| num_sampling_steps: int = 20, | |
| last_step_size: float = 0.0, | |
| noise_repeat: int = 1, | |
| ): | |
| """c.shape = (bsz, cond_dim)""" | |
| cfg_mult = 1 | |
| if cfg > 1.0: | |
| cfg_mult += 1 | |
| if cfg_img > 1.0: | |
| cfg_mult += 1 | |
| device, dtype = c.device, c.dtype | |
| noise = randn_tensor((c.shape[0] // cfg_mult, self.input_dim), noise_repeat, device, dtype) | |
| mean_x = noise | |
| x = noise | |
| xs = [] | |
| t0, t1 = 0, 1 | |
| timesteps = torch.linspace(t0, t1, num_sampling_steps + 1, device=device)[:-1] | |
| timesteps = timesteps / (timesteps_shift - (timesteps_shift - 1) * timesteps) | |
| timesteps = torch.cat([timesteps, torch.ones(1, device=device)]) | |
| for ti, tj in zip(timesteps[:-1], timesteps[1:]): | |
| dt = tj - ti | |
| combined = torch.cat([x] * cfg_mult, dim=0) | |
| velocity = self.net(combined.to(c.dtype), ti.expand(c.shape[0]).to(c), c) | |
| velocity = velocity.to(torch.float32) | |
| velocity = self.get_velocity_from_cfg(velocity, cfg, cfg_img, cfg_mult) | |
| score = self.get_score_from_velocity(velocity, x, ti.expand(x.shape[0]).to(x)) | |
| drift = velocity + (1 - expand_t(ti.expand(x.shape[0]).to(x), x)) * score | |
| w_cur = randn_tensor((c.shape[0] // cfg_mult, self.input_dim), noise_repeat, device, dtype) | |
| dw = w_cur * torch.sqrt(dt) | |
| mean_x = x + drift * dt | |
| x = mean_x + torch.sqrt(2 * (1 - expand_t(ti.expand(x.shape[0]).to(x), x))) * dw | |
| xs.append(x) | |
| if len(xs) != num_sampling_steps: | |
| raise ValueError(f"Samples ({len(xs)}) does not match the number of steps ({num_sampling_steps})") | |
| return xs[-1] | |